4/17/12

Announcements for This Lecture

Readings Announcements
e Sections 4.2,4.3 ¢ Assignment 1 Resubmissions
= Still working on resubmits
o Prelim, March 8t 7:30-9:30 = 165 out of 195 have a 10

= Material up to next Tuesday = Others extended to Feb. 28

* Sample prelims from past ¢ Assignment 2 (last time)
years on course web page
¢ Conflict with Prelim time?
= Submit to Prelim 1 Conflict
assignment on CMS
= Do not submit if no conflict

= Have not graded them yet
= Solution posted in CMS
¢ Assignment 3 is now posted
= Due next Tuesday to CMS
= Even if still working on A1l

Subclasses: Private is Private!

public class Animal { Private = only in class

private String name;
private int age; = Excludes subclasses too!
* How access fields?
public Animal(String n, int a) {
. = getters and setters
name = n;

age = a; = Use super() to initialize

public class Cat extends Animal {
public Cat(String n, int a) {
super(n,a);
1o
3

Cat extends Api

Apparent Type of an Expression

0 1 2 @105de
~
Apparently, v[k] is an Animal! isOlder(Animal) toString()
The call

v.get(k).getWeight()
is illegal (will not compile).
The apparent type of v[k] is Animal

* Does not declare getWeight()
* Does not inherit getWeight()

isOlder(Animal) ~ toString()

Casting Up and Down the Class Hierarchy

@105de

* Review of casting

" (in) (5.0/7.5) " Animal(String.int)
= (double) 6 isOlder(Animal) toString()

= double d=5; // automatic cast

. C 1 1 . Cat(String,int) getNoise()
an also cast class types. getWeight() toString()

= Animal h = new Cat("N", 5);

= Catc=(Cat) h;

Object
Animal(String,int)

The Class Hierarchy Animal isOlder(Animal) toString()
(— means “extends” or “is a kind of”)

toString()

Implicit Casting in the Class Hierarchy

@105de

public class Animal {
/#% = "this is older than h" */
public boolean isOlder(Animal h)
{ return this.age > h.age; }

Animal(String,int)
isOlder(Animal) toString()

}
Cat(String,int) getNoise()
Cat ¢ = new Cat(“C”, 5); Casts up the getWeight() toString()
Dog d = new Dog(“D”, 6); hierarchy
. are automatic
c.isOlder(d) 2?7?77 .
Object
- T Animal(String,int)
isOlder: 1 | [@105dc Animal isOlder(Animal) toString()
h | @392 | N
Animal A 5
Dog Cat Dog(String,int) getNoise()

toString()

cast from Dog to Animal, automatically

Real vs. Apparent Type

@3cf92

public class Animal {
/*#% = "this is older than h" */
public boolean isOlder(Animal h)
{ return this.age > h.age; }

Animal(String,int)
isOlder(Animal) toString()

2 e 8

Dog(String,int) getNoise()
Cat ¢ = new Cat(“C”, 5); toString()
Dog d = new Dog(“D", 6); Real type of h:

cisOlder(d) 22777 + Semantic Property

= Type of the folder Apparently, h

isOlder: 1 | | @105de is an Animal, but

Apparent type of h:
/ = Syntactic Property really it is a Dog

= Type that is declared

h | @3cf92
Animal 4

4/17/12

What Can Variable h reference?

@105dc

public class Animal {
/#% = "this is older than h" */

public boolean isOlder(Animal h) Animal(String,int)
isOlder(Animal) toString()

{ return this.age > h.age; }

}

-C-at(Stnng,un)
Cat ¢ = new Cat(“C”, 5); getWeight() toString()
Dog d = new Dog(“D”, 6);
d.isOlder(c) 22?77

* Apparent type determines
what methods calls are legal

isOlder: 1 | | @105dc Cannot call h.getWeight();

= This gives a syntax error
@105de .
b Animal = Even though real type is Cat

How Do We Resolve h.toString()?

public class Animal { @105dc
/#% = "this is older than h" */ _age int |
public boolean isOlder(Animal h) { Animal(String,int)

isOlder(Animal) toString()

h.toString();

return thiSage s age;

i

Cat(String,int) getNoise()

getWeight() toString()

Cat ¢ = new Cat(“C”, 5
Dog d = new Dog(“D”, 6);
d.isOlder(c) ?2?7?7?

Determined by

isOlder: 1 | | @105de

the real type of h

Casting Down the Class Hierarchy

@105dc

public class Animal {
/** If Animal is a cat, return weight; else return 0 */
public static double checkWeight(Animal h) {

if (!(h instanceof Cat)) { isOlder(Animal) toString()
return 0.0;

¥ . Cat(String,int) getNoise()

//his a Cat getWeight() toString()

Cat ¢ = (Cat)h; // Downward cast
return c.getWeight();
3

(Dog) h would lead to

a runtime error.
checkWeight: 1 Animal

You can’t cast an object to
something that it is not!

L Animal
Types of Errors in Java
Syntactic Errors Runtime errors
* Can check at compile time * Can only check at run time
* Bad use of “grammar” ¢ Generally have to do with
contents (not type) of variable
* Examples: * Examples:
= Lack of semicolon = Variable unexpectedly null
= Unknown method or variable = Bad downward casts
= Use of method not in the = Method call that violates the
apparent type of variable parameter preconditions

How to Override equals(Object)

public class Animal {

/*# Yields: “h is an Animal with the same @105de
values in its fields as this Animal */ | _______________
public boolean equals(Object h) { equals(Object) toString()
if (!(h instanceof Animal)) { return false;
N R—)
Animal ob= (Animal)h;

return name .equals(ob.name) &&

age == ob.age;
) Animal(String,int) getName()
3} isOlder(Animal) toString()

May want to define equals() in Cat and Dog. oo
Cat(String,int)

A cat is not equal to a dog, even if they have getWeight() toString()
the same name and age!

Overriding Versus Overloading
public class Animal { ...
public boolean equals(Object h) { Catc =new Cat(“C”, 5);
if (!(h instanceof Animal)) { Dog d = new Dog(“C”, 5);
return false; } cequals(c) ?7?77?
Animal ob= (Animal)h;
return name .equals(ob.name) &&
age == ob.age; * Method calls match on
» = Name of the method
public class Cat { ... = Types of the parameters
public boolean equals(Cat h) { . If no match:
return getName().equals(h.getName())
&& getAge() == h.getAge(): = Upcasts the arguments
&& weight == h.weight; = Searches again for match
3

