
Subclasses &���
Inheritance	

Lecture 9	

	

Announcements for This Lecture	

Readings	

•  Section 1.6, 4.1 (today)	

•  Section 4.2 (Thursday)	

Announcements	

•  Assignment 1 Resubmissions	

  Want “final version” tonight	

  But keep doing until get a 10	

•  Assignment 2 at end of class	

•  Assignment 3 is now posted	

  Due next Tuesday to CMS	

  Even if still working on A1	

  Keep A1, A3 in separate folders	

•  It calms down after this…	

•  Prelim, March 8th 7:30-9:30	

  Material up to next Tuesday	

  Sample prelims from past ���

years on course web page	

•  Conflict with Prelim time?	

  Submit to Prelim 1 Conflict
assignment on CMS	

  Do not submit if no conflict	

2/21/12	

 2	

Subclasses & Inheritance	

Constructors are Instance Methods	

1.  Make a new object (folder)	

  Java gives the folder a name	

  All fields are default (0 or null)	

2.  Draw a frame for the call	

3.  Assign the argument value to

the parameter (in frame)	

4.  Execute the method body	

  Look for variables in the frame	

  Execute statements to initialize ���

the fields to non-default values	

  Give the name of folder as the result	

5.  Erase the frame for the call	

2/21/12	

 3	

public Point3d(

double x0,	

	

 	

double y0,	

	

 	

double z0) {	

 x = x0;	

 y = y0;	

 z = z0;	

}	

Point3d:	

 @3e9cff	

x0	

y0	

z0	

1	

Frame for	

Constructor	

Scope	

Subclasses & Inheritance	

Example: p = new Point3d(1.0, 2.2, 3.3); 	

2/21/12	

 4	

public Point3d(

double x0,	

	

 	

double y0,	

	

 	

double z0) {	

 x = x0;	

 y = y0;	

 z = z0;	

}	

p	

Point3d	

Point3d	

x	

 0.0	

@3e9cff	

…

y	

 0.0	

z	

 0.0	

Point3d:	

 @3e9cff	

x0	

y0	

z0	

1.0	

✗	

2.2	

3.3	

✗	

✗	

@3e9cff	

1.0	

2.2	

3.3	

1	

3	

2	

Subclasses & Inheritance	

A Interesting Challenge	

•  How do we add new methods to AcornProfile?	

 Open up the .java file and add them!	

•  Java has a lot “built-in” classes	

  Examples: String, Vector, JFrame	

•  What if we want to add methods to these?	

 We cannot access the .java file (where is it???)	

•  But we can create a subclass	

 A new class with all fields, methods of the “parent”	

  Class also contains anything new we want to add	

2/21/12	

 5	

Subclasses & Inheritance	

Subclasses in the Java API	

•  Subclassing creates a
hierarchy of classes	

  Subclass has a super class ���

or “parent” class	

  That parent may have a

super class as well	

•  Explicit in the Java API	

  API does not respecify
inherited methods	

  Often have to go to super
class for specification	

Package	

Class	

Super class	

Super super class	

2/21/12	

 6	

Subclasses & Inheritance	

Class Definition REVISITED	

•  Describes the format of a folder (instance, object) of the class.	

	

/** ���
 * Description of what the class is for���
 */���
public class <class-name> extends <super-class> {	

	

 	

declarations of fields and methods (in any order) ���
}	

•  Class <class-name> has all methods and fields of its parent	

  We say that it inherits them	

•  Also has any new fields or methods declared inside of it	

2/21/12	

 Subclasses & Inheritance	

 7	

Folder Analogy and Subclasses	

superclass-name	

fields declared inside ���
<superclass-name>	

@3e9cff	

methods declared inside ���
<superclass-name>	

subclass-name	

fields declared inside ���
<subclass-name>	

methods declared inside ���
<subclass-name>	

folder (object) belongs ���
in file drawer for class	

subclass-name	

2/21/12	

 8	

Subclasses & Inheritance	

Subclassing a JFrame	

/** Description of what the class is for… */	

public class SquareJFrame extends JFrame {	

	

/** Set the height of the window to the width */	

	

public void setHeightToWidth() {	

	

 	

setSize(getWidth(),getWidth()); 	

 	

	

	

}	

	

/** Yields: the area of the window */	

	

public int area() {	

	

 	

return getWidth()*getHeight();	

	

}	

	

…	

}	

folder (object) belongs ���
in file drawer for class	

SquareJFrame	

Inherited method ���
which is used as ���
a helper method	

9	

Subclasses & Inheritance	

Object: The Superest Class of All	

•  How does toString() work?	

  All classes have a toString() by default	

  Default string is the folder name	

  Defining toString() in subclass overrides this method	

•  Java Feature: Every class that does not extend another
class automatically extends class Object. 	

	

 	

public class C { … }	

	

 	

public class C extends Object { …}	

2/21/12	

 10	

Subclasses & Inheritance	

Object: The Superest Class of All	

@105dc	

x 0.0

y 0.0

getX()

…

double

double

Point2d()

Point2d	

@105dc	

x 0.0

y 0.0

getX()

…

double

double

Point2d()

Point2d	

equals(Object)

…

toString()

Object	

So this… is really this.	

2/21/12	

 11	

Object: The Superest Class of All	

@105dc	

x 0.0

y 0.0

getX()

…

double

double

Point2d()

Point2d	

@105dc	

x 0.0

y 0.0

getX()

…

double

double

Point2d()

Point2d	

equals(Object)

…

toString()

Object	

So this… is really this.	

	

Because it is always there, to  
	
avoid clutter, we don’t generally 
	
draw the partition for the Object���
	

superclass in our diagrams 

2/21/12	

 12	

The Bottom-Up Rule	

•  Which toString() is called?	

  Work the way up from the

bottom of the folder.	

  Find the first method header

that matches	

  Use the definition from

the .java file for that class	

•  New method definitions

override those of super class	

2/21/12	

 13	

@105dc	

x 0.0

y 0.0

getX()

…

double

double

Point2d()

Point2d	

…
toString()

Object	

toString()

Keywords this and super!

this!

•  Refers to the object name in
scope box of the method call	

•  this.<field> is field in object	

  Example: this.x	

•  this.<method-call> calls a
method in this object	

  Example: this.getX()	

•  this(<parameters>) calls a���
constructor	

  Example: this(0.0,0.0,0.0)	

super!

•  Functions mostly the same as
this (refers to object in scope)	

•  super.<method-call> calls a
method in the superclass or
even higher up!	

•  super(<parameters>) calls
constructor of super class	

  Useful for initialization	

  Necessary if fields private	

2/21/12	

 Subclasses & Inheritance	

 14	

Using this as a Constructor	

•  Usage: this(<params>)	

  Looks for constructor with

parameters of that type	

  Calls that constructor as a

helper method	

  Can only do this inside

another constructor	

•  This is why object name

must be in the scope box	

  Else what is this?	

  this = name in scope box	

 public Point3d(double x0, ���
 double y0, ���
 double z0) {	

 x = x0;	

 y = y0;	

 z = z0;	

 }	

 public Point3d() {	

 // Uses other constructor.	

 this(0.0,0.0,0.0)	

 }	

2/21/12	

 Subclasses & Inheritance	

 15	

Using super in a Constructor	

•  Subclasses inherit fields of
the superclass	

•  How do we initialize them?	

  Could initialize in subclass	

  Or could use constructor

from the parent class	

•  Usage: super(<params>)	

  Calls superclass constructor

with matching parameters	

  It must be first line in the

constructor!	

2/21/12	

 Subclasses & Inheritance	

 16	

@105dc	

bonus

…

double

Executive	

…

Employee	

0.0

salary double 0.0

start int 2012

name String Fred

Using super in a Constructor	

 public Employee(String n, int d) {	

 name= n;	

 start= d;	

 salary= 50000;	

}	

 public Executive(String n, int d, 	

 double b) { 	

 super(n,d);	

 bonus = b;	

}	

2/21/12	

 Subclasses & Inheritance	

 17	

@105dc	

bonus

…

double

Executive	

…

Employee	

0.0

salary double 0.0

start int 2012

name String Fred

