Lecture 7

Strings &
Stepwise Refinement

Announcements for This Lecture

Readings Assignments
 pp. 175-181 e Assignment 1 due tonight
e Sections 2.5,3.1.2-3.1.3 * Before Midnight!!!

= Will have get by class Thu
= Revise if you are told

e (optional) PLive p. 2-5
e New Assignment Posted

= No code; written only

= Meant to do while you revise

= Due in class next week

e Will go to 2-week assignment
schedule after Assignment 3

2/14/12 Strings & Refinement 2

Inside-Out Rule (See p. 83)

 Methods reference fields or static variables (of same class) 3
= (Can reference parameters of that method 2

= (Can reference local variables inside same braces {} 1

e [f two of the same name, use the closest declaration

@3e9cff @(0l1a2ed
Point3d Point3d
> x 1 50.0 X (250
setX(double x0) { setX(double x) {
— X:XO;J X=X;—A
)) |

2/14/12 Strings & Refinement 3

Inside-Out Rule (See p. 83)

e Parameter x0 1s found in e Parameter x “blocks” (or
the frame for the method shadows) the reference to
call. Exists temporarily the field x.

@3e9cff @(01a2ed
Point3d Point3d

> x [50.0 X 250
setX(double x0) { setX(double x) {

L x—x0—2 <= x;—1
) |

2/14/12 Strings & Refinement 4

A Solution: this

this is a built-in “variable” that gives an object name

e In object (folder) @3e9ctt, e In object (folder) @01a2ed,

this refers to @3e9cff this refers to @01a2ed
> @3e9ctt > @0la2ed
E Point3d i Point3d
i X [50.0 i X 1250
i setX(double x) { i setX(double x) {
SR this.X = x;J {mmmme this.X = X;J
h h

2/14/12 Strings & Refinement 5

How Well Are You Following?

public class Demo { ,

* Function (not procedure) that “does something’

private int var; o . e . .
e This is called a function with “side-effects

public Demo() {

var = 0; e Create a new Demo object:
; Demo d = new Demo();
public@nt getSetWTFO)oolean flag) {
if (flag) { * What does this give us?
int var; d.getSetWTF(true)
var = 1;
yelse 1 A: Function gives 0
var = 2; . .
B: Function gives 1
} . . eg)
return var: C: Function gives
) D: I have no clue

} Strings & Refinement

String is a Class; Quoted Text is an Object

e String s = "abc d"; S | @3e9cff
* Indexed characters: @3e9cff
01234 String

abe d "abc d"

""""""" -
= s.length() is 5 length() fields are hidden

= s.charAt(2) is 'c CharA.t(mt.)
substring(int)

= s.substring(2) 1s "cd" substring(int, int)

= s.substring(1,3) is "bc" indexOf(String)
lastIndexOf(String)

2/14/12 Strings & Refinement 7

String Has a Lot of Useful Methods

e String s = "abc d"; * See text pp. 175181

* Indexed characters: * Lookn CD ProgramLive

01234 e Look at API specs for String

abc d

= s.substring(2,4) is "¢ " (NOT "c d")
= g.substring(2) 1s "cd"
" bcd ".trim() 1s "bcd"

(trim beginning and ending blanks)
= s.indexOf("bc") 1s 1

(index or position of first occurrence of in "bc" or -1 if none)

2/14/12 Strings & Refinement

String Variables Hold Folder Names

e Create two Strings s | @3e9cff
= String s = "hello"; @3e9cff
= String t = "hello"; String
: "hello"
e What is the values ==t? = —
A true
B: false t |@01a2ed
C: neither
@01a2ed
D: I do not know :
String
"hello"

2/14/12 Strings & Refinement 9

String Variables Hold Folder Names

e Create two Strings S | @3edctt
= String s = "hello"; @3e9cff
= String t = "hello"; String
"hello"
e Donotuse ==totest = —
equality of s and t equals(String)
= g ==t tests 1f same object
> OV @01a2ed
= Not useful for Strings
@01a2ed

e Use equals() instead

= s.equals(t) tests if they "hello"

have the same text = mmmmmmmmmmmmmaoooooo-.
equals(String)

2/14/12 Strings & Refinement 10

Algorithms: Heart of Computer Science

* Algorithm: A step-by-step procedure for how to do
something (usually a calculation).

 Implementation: How to write an algorithm in a
specific programming language
* Good programmers know how to separate the two
* Work out algorithm on paper or in head
= Once done, implement it in the language

= Limits errors to syntax errors (easy to find), not
conceptual errors (much, much harder to find)

e Key to designing algorithms: stepwise refinement

2/14/12 Strings & Refinement

Algorithms: Heart of Computer Science

* Algorithm: A step-by-step procedure for how to do
something (usually a calculation).

 Implementation: How to write an algorithm in a
specific programming language

Java does what you say, IS know ho Java cannot two
not what you meant m on paper “understand” you

idone, implement it in th/ng{age

s errors to(syntax errors)(easy to find), not
(conceptual errors fmuch, much harder to find)

e Key to designing algorithms: stepwise refinement

2/14/12 Strings & Refinement

Stepwise Refinement: Basic Principles

* Write Specifications First
Write a method specification before writing its body

e Take Small Steps
Do a little at a time; follow the Manana Principle

 Compile Often
This can catch syntax errors

* Separate Concerns
Focus on one step at a time

e Intersperse Programming and Testing
When you finish a step, test it immediately

2/14/12 Strings & Refinement 13

Manana Principle

e If not in current step, delay to “tomorrow”

= Use comments to write steps in English

= Add “stubs” to ensure the program compiles
(e.g. empty definitions or bogus return statements)

= Slowly replace stubs/comments with real code
* Only create new local variables if you have to

e Sometimes results 1in creation of more methods

= Replace the step with a method call
= But leave the method definition empty for now
" This is called top-down design

2/14/12 Strings & Refinement

14

Example: Reordering a String

e lastNameFirst(”Walker White") is "White, Walker”

/** Yields: copy of s but in the form <last-name>, <first-name>
* Precondition: s 1s in the form <first-name> <last-name>

o with one blank between the two names */
public static String lastNameFirst(String s) {
// Find the first name
// Find the last name

// Put them together with a comma

return ""; // Stub return

2/14/12 Strings & Refinement

15

Example: Reordering a String

e lastNameFirst(”Walker White") is "White, Walker”

/** Yields: copy of s but in the form <last-name>, <first-name>
* Precondition: s 1s in the form <first-name> <last-name>

S

with one blank between the two names */

public static String lastNameFirst(String s) {

¥

2/14/12

int endOfFirst = s.indexOf(" ");

String firstName = s.subString(0,endOfFirst);

// Find the last name

// Put them together with a comma

return firstName; // Stub return (which you can test!)

Strings & Refinement

16

Refinement: Creating Helper Methods

/ %k

* Yields: copy of s but in the form

* <last-name>, <first-name>

* Precondition: s is in the form

* <first-name> <last-name>

* with one blank between names

*/

public static String
lastNameFirst(String s) {

String first o firstName(s);
// Find the last name

// Put together with comma
return first; // Stub

[

* Yields: first name in s

* Precondition: s 1s in the form

* <first-name> <last-name>

* with one blank between names

*/

public static String
firstName(String s) {

int end = s.indexOf(" ")
return s.subString(0,end);

2/14/12 Strings & Refinement

17

Refinement: Creating Helper Methods

Do This Sparingly

e If you might use this step in
another method later

e If implementation is rather
long and complicated

public static String
lastNameFirst(String s) {

String firstName = firstName(s);

// Find the last name
// Put together with comma
return firstName; // Stub

2/14/12

/>I<>X<

* Yields: first name in s

* Precondition: s is in the form
* <first-name> <last-name>

* with one blank between names
*

public static String

firstName(String s) {

int end = s.indexOf("")
return s.subString(0,end);

Strings & Refinement

18

Example: Reordering a String

e lastNameFirst(”Walker White") 1s "White, Walker”

/** Yields: copy of s but in the form <last-name>, <first-name>
* Precondition: s 1s in the form <first-name> <last-name>

o with one or more blanks between the names */
public static String lastNameFirst(String s) {
// Find the first name
// Find the last name

// Put them together with a comma

return ""; // Stub return

2/14/12 Strings & Refinement

19

