Important For This Lecture

Readings Announcements

e Testing with Junit
= Appendix 1.2.4 = Posted on web page
 Function toString = Due Tuesday, Feb. 14th
= pp. 112—113 * 1-on-1s for next 2 weeks
= Slots still available
= Schedule through CMS
* Recall Lab Schedules
= 12:20-2:15 in ACCEL
= 2:30-4:25 in Phillips 318

* Assignment 1 is live

TESTING

Public vs. Private

¢ Recall our convention
= Fields are private
= Everything else public
¢ Private means “hidden”
= Public fields can be
accessed directly
¢ But this is a bad idea!

= Cannot control how other
programmers use them

= They might violate our
invariants (and get bugs)

public class PublicPoint3d {
public double x;
public double y;
public double z;

}

¢ Type in Interactions Pane:
> PublicPoint3d p = new

PublicPoint3d();
>px=3.0;
> pXx

¢ No need for getters/setters

Aside: Private is a Class Property!

. . ublic class Point3d {
* Private means hiddento |®

objects of other classes!

= Does not apply to two
objects of same class

private double x;
private double y;
private double z;

/** Yields: Distance to g */
public double
distanceTo(Point3d q) {
return Math.sqrt(
(X-9.X)*(x-q.X)+
(y-9.y)*(y-q.y)+
(z-q.2)*(z-q.2));

= Methods can access fields
in object of same class

» Example: Point distance
e Useful in Assignment 1

= Hint: What field does not
have getters or setters?

Invariants vs. Preconditions

* Both are properties that
must be true

= Invariant: Property of a field

= Precondition: Property of a
method parameter
* Preconditions are a way to
“pass the buck”

= Responsibility of the method

call, not method definition
= Houwvou will “enfarce”
* Recall Iname invariant
* Precondition ensures
invariant is true

@4e0al

getName()

setName(String n)

et worker’s last name to n

* Precondition: n cannot be null
%/
public void setName(String n) {

Memorize These!

We Write Programs to Do Things

Write them down
several times.

* Methods are the key doers
Method Definition Method Call

e Command to do the method

¢ Defines what method does

(public void setName(String n) {) var.setName(“Bob”);
Iname= n;

declaration of Method
parameter n Header

argument to
assign to n

* Parameter: variable that is declared within
the parentheses of a method header.

* Argument: a value to assign to the method
parameter when it is called

toString(): A Very Special Method

* We use interactions pane
to see object “tab name”
* Interactions pane is really
showing off a string
= String that represents object
= By default: the tab name
* But we can change this!
= Add toString() to your class
= That String will be used in
place of the tab name

* Will see usage later

public class Point3d {

/**Yields: String (x,y,z)*/
public String toString() {
return " ("+x+","+y+","

+z+")";
}
}

¢ Type in Interactions Pane:
> Point3d p = new Point3d();
>p

¢ Remove toString() & repeat

Specifications for Methods in Worker
/* worker with last name n

* LT Q SSN s, and boss b (null if none).
n is not null, s in
0..999999999 with no leading zeros./

public Worker(String n, int s, Worker b)

/*€ Yields: jvorker's last name */

public String getLname()

/** Yields: last 4 SSN digits w/o leading zeroes. *
public int getSSN()

/** Yields: worker's boss (null if none) */

public Worker getBoss()

boss Worker

** Set boss to b */
public void setBoss(Worker b)

Test Cases: Finding Errors

* Bug: Errorin a program. (Always expect them!)

* Debugging: Process of finding bugs and removing them.

¢ Testing: Process of analyzing, running program, looking for bugs.
* Test case: A set of input values, together with the expected output.

Get in the habit of writing test cases for a method from the method’s
specification —even before writing the method’s body.

/** Yields: number of vowels in word w.
* Precondition: w contains at least one letter and only letters */
public int numberOfVowels(String w) {
// (nothing here yet!)
}

Test Cases for a Constructor in Worker

1. wl =new Worker(“Obama”, 1, null);
Name should be: “Obama”; SSN: 1; boss: null.

2. w2 =new Worker(“Biden”, 2, wl);
Name should be: “Biden”; SSN:2; boss: wl.

¢ Need a way to run these test cases
¢ Could use interactions pane, but this is time-consuming.

¢ To create a testing framework G0 Edit_Tools _Project_Debugger

o R TN ®N pmwhite/C
= Select menu File item new Junit Test Case.... | ewjwaciass.. 0%N © com
= At prompt, put in class name WorkerTester o otic boo

! @openfoder.. oo MU

= Save it in same directory as class Worker

* This imports junit.framework.TestCase; has tools for testing

Test Case Template Created by DrJava

/#% A JUnit test case class.
ry method starting with "test” will be called when running

* the test with JUnit. *
public class WorkerTester extends TestCase {

/*% A test method.

Replace "X" with a name describing the test. Write as

* many "testSomething" methods in this class as you wish,
* and each one will be called when testing.
public void testX() {

i

¢ One method you can use in testX is
assertEquals(x.y)
o It tests whether expected value x equals computed value y.

Method to Test Constructor (& Getter Methods)

/#* Test first constructor (and getter methods getName, getSSN4, and getBo:
public void testConstructor() {
first Worker wl=new Worker(“Obama", 123456789, null);
assertEquals(“Obama”, w1.getName(),);
assertEquals(6789, w1.getSSN4()); assertEquals(x,y):
assertEquals(null, w1.getBoss()); Tests if x (expected)
equals y (computed)

If they are not equal, print

test
case

2nd Worker w2=new Worker("Biden", 2, w1);
assertEquals(“Biden”, w2.getName());

test
. assertEquals(2, w2.getSSN4()); an error message & stops
assertEquals(w1, w2.getBoss()); * Other testing procedures
} on p. 488 of the text

Every time you click button
Test in DrJava, this method
(and all other testX methods)
will be called.

Special: called w/o object

