\qquad first name \qquad Cornell Net id \qquad

CS1110 Prelim 28 November 2011

This 90 -minute exam has 6 questions (numbered $0 . .5$) worth a total of 100 points. Scan the whole test before starting. Budget your time wisely. Use the back of these pages if you need more space. You may separate the pages; we have a stapler at the front of the room.
Question 0 (2 pts). Write your last name, first name, and Cornell NetId, legibly, at the top of each page.

Question 1 (16 points) while-loops. Complete the body of the following function - the repetend and all the underlined places. Note that the invariant is given and must be used, so study it carefully. Examples: eq ("aaaxxyx", 0) is 3 and eq ("aaaxxyx", 5) is 1 . Be careful with the loop condition; there are two situations in which execution of the loop should terminate.

```
/** = the length of the sequence of equal characters beginning at s[i].
            Precondition: 0<= i<s.length(). */
public static int eqChars(String s, int i) {
int k=
```

\qquad

``` ;
/** invariant: characters in \(\mathrm{s}[\mathrm{i} . . \mathrm{i}+\mathrm{k}-1]\) are the same. */
```

\qquad

``` ) \{
    }
    return
```

\qquad

``` ;
    }
}
```

Question 2 (20 points) recursion. We want to compress strings that have long sequences of equal characters. For example, we want to compress "bbbbaaa\$\$\$\$\$\$\$\$\$\$\$\$\$\$d" to "b4a3\$16d1". In the compression, each sequence of equal characters is given by the character followed by the length of the sequence. Write function compress to do this. Use no loops; use only recursion. You may use function eqChars of the previous question 1 .
$/ * *=$ the compression of s , as explained above.
Precondition: s contains no digits 0..9. */
public static String compress(String s) \{

```
}
```

\qquad first name \qquad Cornell Net id \qquad
Question 3 (20 pts) OO: casting, instanceof, etc.
(a) Consider the three variables and object, to the right. Each variable is annotated with its apparent class. Below are six method calls; circle those that are legal.

$$
\begin{array}{lll}
\text { b.p1(5) } & \text { c.p1(5) } & \text { d.p1(5) } \\
\text { b.p1() } & \text { c.p1() } & \text { d.p1() }
\end{array}
$$

(b) Using variable b , write a legal expression that calls method p2 of the object.

a1

equals(Object) toString()		Object
toString() p1(int)\quadC1 ()	C 1 (int, int)	

(c) Write the body of function equals in class Planet, below. You may not write any methods in class CelestialBody, and you may not assume that others exist. A table on page 3 has methods of class Vector that might be useful.

```
/** An instance maintains information about a celestial body */
public class CelestialBody {
    private String bodyName; // Name of the body
    private boolean life; // True if life exists here
    /** Constructor: A Celestial Body with life li, name n*/
    public CelestialBody(boolean li, String n) {...}
    /** = "b is a CelestialBody and has the same body name and life property as this celestial body" */
    public boolean equals(Object b) { ... }
}
/** An instance maintains information about a planet */
public class Planet extends CelestialBody {
    private Vector<CelestialBody> ms; // The moons of the planet, in alphabetical order
    /** Constructor: a Planet with life 1, body name n, and no moons. */
    public Planet(boolean 1, String n) { ... }
    /** = "b is a Planet and has the same body name, life property, and moons as this Planet */
    public boolean equals(Object b) {
    }
}
\(\qquad\) first name \(\qquad\)
\(\qquad\)
Question 4 (22 pts) Abstract classes, abstract methods.
(a) What is the effect of adding the keyword abstract to a class definition?
(b) What is the effect of adding the keyword abstract to a method definition?
(c) Solve this little puzzle, using your knowledge of abstract classes, casting, etc. Below are classes A, B, \(C\), and \(D\) for you to complete, filling in the underlined places and declaring exactly four methods (no constructors). Variables a, b, c, and d have types A, B, C, and D, respectively. Complete the four classes so that the four points \(1 . .5\) listed below are satisfied. The five points could be listed in any order; the ordering below may help you draw conclusions from each point as you read it.
We suggest you solve the puzzle by drawing the hierarchy (or objects) as you study \(1 . .5\) below and complete the classes only when you have the solution.
1. Each of the following statements produces an error at compile time:
\(\mathrm{a}=\) new A() ; // compile-time error
a.h(); // compile-time error
2. The following sequence of 6 statements compiles and runs without error:
\(\mathrm{d}=\) new D()\(; \mathrm{a}=\mathrm{d} ; \mathrm{b}=(\mathrm{B}) \mathrm{a}\);
a.a(); b.h(); d.h();
3. If we were to add the following declaration, it would give a compile-time error:
public class E extends A \{ \} // compile-time error
4. No object has partitions for all of A, B, C, and D.
5. The following statements compile, but the second produces an error at runtime.
```

a=new C();
c= (B)a; // run-time error

```
\(\qquad\) class A \(\qquad\) \{ \(\qquad\) class C \(\qquad\) \{
\}
\(\qquad\) class B \(\qquad\) \{
\}
\}
\(\qquad\)
class D \{
\}

\(\qquad\) first name \(\qquad\)
\(\qquad\)
Question 5 (20 pts) Arrays and loops.
(a) Write a declaration with an array initializer for an array bb that contains the five strings "a", "e", "i", "○", and "u".
(b) Array b, with element type CelestialBody (see question 3) contains no null elements. However, b may contains duplicates. For example, b might be \(\{\mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 2, \mathrm{a} 3, \mathrm{a} 5, \mathrm{a} 4, \mathrm{a} 4, \mathrm{a} 0\}\), where each element is the name of a CelestialBody object. The function given below is supposed to extract elements from b and put them in Vector v, but without duplicates. For example, given b as just shown, v will contain \(\{\mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3, \mathrm{a} 5, \mathrm{a} 4, \mathrm{a} 0\}\). Write the body of the function given below as follows:
\begin{tabular}{|c|c|}
\hline 0 & out of 02 \\
\hline 1 & out of 16 \\
\hline 2 & out of 20 \\
\hline 3 & out of 20 \\
\hline 4 & out of 22 \\
\hline 5 & out of 20 \\
\hline Total & out of 100 \\
\hline
\end{tabular}
1. Notice that a range of integers has to be processed. Write that range here:
2. Under the first underline is a command: "Store in v a list ..." Rewrite that as the postcondition in the appropriate place.
3. Fill in the header of the for-loop -between "for (" and ");".
4. Write the loop invariant in the appropriate place.
5. Write any necessary initialization.
6. Write the repetend.
\(/ * *=\mathrm{a}\) list of elements of b with no duplicates.
Precondition: the elements of \(b\) are not null, and all duplicates appear next to each other */
public static Vector<CelestialBody> extract(CelestialBody[] b) \{
\(\qquad\)
\(/ /\) Store in v a list of all elements of \(\mathrm{b}[0 .\). length-1] but with no duplicates
// invariant: \(\qquad\)
for \((\) \(\qquad\) ) \{
\}
// Postcondition: \(\qquad\)
return v ;
\}```

