
Grades for the final will be posted on the CMS as soon as they
are completed. Course grades will be posted next week. You
can look at your final when you return in January, not before.
HAVE A GOOD WINTER BREAK!
Submit all regrade requests by 8PM TONIGHT. Use the CMS
where possible. Regrades for prelims will not be considered.
You have 2.5 hours to complete the questions in this exam,
which are numbered 0..7. Please glance through the whole
exam before starting. The exam is worth 100 points.

Question 0 (2 points). Print your name and Cornell net id at
the top of each page. Please make them legible.

The first few questions concern an inventory and cash register
system for a ski and snowboard rental shop. (We have plenty
of time to work on this system while we wait for it to snow.)

Classes Transaction and Item appear to the right.
They will be referred to later.

An instance of class Transaction represents an or-
der that is paid for at the cash register; among other
types, it could be a sale of some items from the shop or
a rental transaction lending out some equipment for
some number of days.

When answering these questions, read carefully, look at
the pertinent class invariants and specifications of meth-
ods, and deal with one issue at a time.

Final, CS1110, Fall 2011
Name (last name ALL CAPS): NetID:

Final CS1110, Fall 2011 pg. 1

Question 0. _________ (out of 02)

Question 1. _________ (out of 15)

Question 2. _________ (out of 15)

Question 3. _________ (out of 13)

Question 4. _________ (out of 13)

Question 5. _________ (out of 14)

Question 6. _________ (out of 14)

Question 7. _________ (out of 14)

Total ___________ (out of 100)

/** An instance represents a transaction that is
paid for at the cash register. */
public abstract class Transaction {
 private Item[] items; // items in the transaction.
 /** Constr.: a transaction with the given
 items. */
 public Transaction(Item items[]) { ... }
 /** = no. of items in this transaction */
 public int numItems() {
 return items.length;
 }
 /** = item i, 0 <= i < numItems() */
 public Item getItem(int i) {
 return items[i];
 }
 /** = the total value of this transaction */
 public abstract int total();
}

Some operations of Vector v and String s

s.endsWith(s1) = “s ends with String s1”

v.size() = number of elements of v
v.get(i) = element i of vector v
v.add(ob); Add object ob to v
v.clear(); Remove all elements from v
v.contains(ob) = v contains Object ob
v.indexOf(ob) = index of first occurrence of ob in v
 (-1 if not in)
v.lastIndexOf(ob) = index of last occurrence of
 ob in v (-1 if not in)

/** An instance is an item in the store. */
public abstract class Item {
 private String name; // Description of item
 private double price; // Selling price
 /** Constructor: An item with given
 name/price. */
 public Item(String name, int price) { … }
 /* = the name of this item */
 public String getName() { … }
 /* = the price of this item */
 public double getPrice() { … }
}

Question 1 (15 points) Abstract classes and subclasses.
(a) Abstract classes, overriding. Below (use the back of the previous page if necessary), write a subclass

SalesTransaction of class Transaction. Give it a constructor that takes an array of Items,
and appropriately override any methods required by class Transaction.

/** An instance is a transaction in which items are sold. */
public class SalesTransaction extends Transaction {

}
(b) Subclasses. Below (use the back of the previous page if necessary), write a subclass RentalItem of

class Item (see page 1). While an Item represents anything in the store that can be sold, a Ren-
talItem represents an item that can also be rented (for instance, a pair of skis that someone might
rent to go skiing for the weekend). RentalItem should contain the following; make them private or
public according to standard practice. You do not have to put in method specifications because they
are given here, but do write the class invariant.

o RentalItem(String name, double price, double dailyRate): A constructor for a rental
item with the given name and price as well as the given per-day rental rate.

o double getDailyRate(): = the cost per day to rent it
/** An instance is an item that can be rented. */
public class RentalItem extends Item {

}

Final, CS1110, Fall 2011
Name (last name ALL CAPS): NetID:

Final CS1110, Fall 2011 pg. 2

Question 2 (15 points) Casting, exceptions.
(a) On the back of the previous page, write a class InvalidRentalException, whose objects can be

thrown. It represents the condition that someone has tried to put an item that cannot be rented into a
rental transaction. You determine which class it should extend. You may use the abbreviation “IRE”.

(b) Casting, exceptions. Below (use the back of the previous page if necessary), write a subclass Ren-
talTransaction of class Transaction (see page 1). In addition to any components required
from class Transaction, RentalTransaction should contain the following; make them pri-
vate or public according to standard practice. You do not have to put in a class invariant or method
specifications because they are already given.

o int rentalDate (a field): the day on which this rental was handed out.

o int dueDate (a field): the day on which this rental is due to be returned.
o Constructor RentalTransaction(Item[] items, int date, int days): A construc-

tor for a new transaction containing the given items, to be rented out on date for a period of days
days. Throw an IRE (which contains a detail message describing the error) if items contains an
item that is not a rental item.

Assume that dates are represented by integers giving the number of days since the store opened. Assume
that the customer pays the rental fee, which is the daily rate times the number of days, for each item as
part of this transaction.
public class RentalTransaction extends Transaction {
 // Constraints on fields: this transaction can contain only RentalItems.

}

Final, CS1110, Fall 2011
Name (last name ALL CAPS): NetID:

Final CS1110, Fall 2011 pg. 3

Question 3 (13 points). Algorithms. Assume s and c are declared and contain some values:

 String s;
 char c;

The characters of s are guaranteed to be in their natural ordering (based on character representations). For
example, s might contain:

 “113AAAZZbbbbbbccd”

Write a binary search, as done in class and on handouts, to search s for the character that is in variable c.
You must: (1) draw the precondition (in the space provided below), (2) draw the postcondition, (3) de-
velop an invariant from the pre-and post-condition, and (4) write the loop with initialization using the four
loopy questions. No points may be awarded for a loop that “works” but does not use the invariant. Thus,
in grading the question, we rely on how well each of the 4 loopy questions is dealt with.

precondition:

postcondition:

invariant:

while () {

}

Final, CS1110, Fall 2011
Name (last name ALL CAPS): NetID:

Final CS1110, Fall 2011 pg. 4

Question 4 (13 points) Two-dimensional arrays and loops. Someone messed up in writing a method to
create certain arrays for us. For example (and this is only an example), they produced the array:

 3 1 2 1 2 3
 2 1 7 8 5 instead of 1 7 8 5 2
 5 the array 5
 6 8 8 6

Thus, they put the last value of each row at the beginning instead of the end.
We ask you to write a procedure that fixes this by rotating each row one position to the left —each

element is moved one position earlier, and the first element is placed in the last position. The method is
declared below; write its body.

Do not use recursion. It will help you to use our methodology for writing loops that process ranges of
integers and to write the repetend of each loop as an English statement saying what has to be done, before
implementing that English statement. You don’t have to if you don’t want to.

/** Rotate each row one position to the left, as explained above.
 Precondition: b is not null, b is possibly ragged, and
 each row contains at least one value */
public static void rotate(int[][] b) {

}

Final, CS1110, Fall 2011
Name (last name ALL CAPS): NetID:

Final CS1110, Fall 2011 pg. 5

Question 5 (14 points). Recursion.
Consider class Elephant —the only fields and methods
necessary for this question are given to the right. Com-
plete the bodies of the methods declared below, each of
which checks the ancestry of an Elephant for two kinds of
inconsistencies (see the second box to the right).
The first one, a non-static function, returns true to indi-
cate a consistent ancestry tree and false to indicate an in-
consistent ancestry tree The second one, a static proce-
dure, returns normally if the tree is consistent but throws
an exception if it is inconsistent —the thrown exception
may have an empty message.
These are two separate, independent questions. Do not
solve the second one by calling the first or vice versa.

/** = “This Elephant’s ancestry tree is consistent.” */
public boolean isConsistent() {

}

class IAE extends RuntimeException { // (We shorten InconsistentAncestryException to IAE)
 public IAE() { … }
 public IAE(String reason) { … }
}

/** Throw an IAE if e’s ancestry tree is not consistent.
 Precondition: e is not null. */
public static void verify(Elephant e) throws IAE{

}

Final, CS1110, Fall 2011
Name (last name ALL CAPS): NetID:

Final CS1110, Fall 2011 pg. 6

/** an instance maintains info
 about an Elephant */
public class Elephant {
 … other stuff …
 Elephant mom; // mother of this Ele.
 // (null if unknown)
 Elephant dad; // father of this Ele.
 // (null if unknown)
 /** = “this Elephant is male.” */
 boolean isMale();
 /** = “e is not null and
 f is not null and
 e is younger than f. */
 static boolean isYounger
 (Elephant e, Elephant f);
}

Let e be an Elephant. It’s ancestry tree
consists of e and all its known parents,
grandparents, etc.
e’s ancestry tree is consistent if:
1. All known mom’s are female,

2. All known dad’s are male,
3. Each elephant in the tree is younger

than its known parents.

Question 6 (14 points) Miscellaneous.
(a) Explain how to execute the statement:

 if (condition1) statement1
 else if (condition2) statement2

(b) Below is a declaration of a variable b. Under the declaration, write a sequence of one or
more statements that stores in b a ragged array that looks as shown to the right.

 int[][] b;

(c) We have forgotten how to check whether a character is a digit, and we are in a hurry. We do remember
that calling Integer.parseInt(s) for a string s throws a NumberFormatException if s is not a
valid decimal number. So we (meaning you) write the function below. Fill in the body of the function.
You will need a try-statement. You may not call Character.isDigit or compare the character to ten
different character literals. Note that to use Integer.parseInt, you have to create a String that con-
sists only of the character c. We expect that you know how to do that.

/** = “c is a digit.” */
public static boolean isDigit(char c) {

}

2 3 4
3
2 1

Final, CS1110, Fall 2011
Name (last name ALL CAPS): NetID:

Final CS1110, Fall 2011 pg. 7

Question 7 (14 points) new-expressions, assignments, and debugging. Consider the two classes at the
bottom of this page. When drawing an object, don’t draw the partition for class Object.
(a) Below is a sequence of three statements. First, draw the variables declared in the statements. Second,
execute the sequence, drawing any objects that are created. Do not draw frames for calls. Do not attempt
to show us the state of affairs after each statement by drawing the variables again and again. Just execute
the sequence of statements, changing the values of variables as execution requires.

C c= new C(1);

SC d= new SC(3);

C e= d;

(b) How many methods named meth does the object whose name is in d contain? If there is more than
one, which ones can be called from a method in some other class? Write statements to call each meth
that can be called, using variables c, d, or e, below:

(c) Evaluate the new-expression
 new SC(5)
As you do it, draw any objects that are created and also draw the frames for any method calls that are exe-
cuted. Don’t erase the frames; just cross them out. Write the value of the expression here:

________________.

The declarations of c, d, and e do
NOT appear in classes C and SC;
they are in some other class.

Final, CS1110, Fall 2011
Name (last name ALL CAPS): NetID:

Final CS1110, Fall 2011 pg. 8

public class SC extends C {

 public SC(int n) {
 super(2*n);
 }

 public int meth() {
 return x + 3;
 }
}

public class C {
 public int x;

 public C (int n) {
 x= (n is even ? 2 : n);
 }

 public int meth() {
 return x / 2;
 }
}

