
Statement “z= c.lead()” will not compile.

2. /** pre: A diagram that says
 b[p..q] is ?
 post: A diagram that says
 b[p..h-1] < 0
 b[h..k-1] = 0
 b[k..q] > 0
*/
public static void DNF(int[] b, int p, int q) {
 int h= p;
 int k= p;
 int s= q;
 // inv: A diagram that says
 b[p..h-1] < 0
 b[h..k-1] = 0
 b[k..s] is ?
 b[s+1..q] > 0
 while (k <= s) {
 if (b[k] < 0) {
 Swap b[h], b[k]; h= h+1; k= k+1;
 } else if (b[k] > 0) {
 Swap b[s], b[k]; s= s-1;
 } else k= k+1;
 }
}

3. /** = as on the exam */
public String path() {
 if (in == null) {
 return name + (items == null ? "" : "/");
 }
 // This is not the top-level folder.
 return in.path() + name + (items == null ? "" : "/");
}

/** = as on the exam */
public String directory() {
 String res= "\n" + path();
 if (items == null)
 return res; // Base case: item is a file

 // This is a dir. Append to res all items in directory
 // inv: paths for items 0..k-1 have been appended
 for (int k= 0; k != items.size(); k= k + 1) {
 res= res + items.get(k).directory();

 }

 return res;
}

4. import acm.graphics.*; // it’s OK if you forgot this
/** An instance is a Brick */
public class Brick extends GRect {
 /** Constr: a new brick with width w and height h*/
 public Brick(double w, double h) {
 super(w, h);
 }
}
(1) // add new brick of width w and height h ...
 add(new Brick(w, h);
(2) // If g is a brick, remove it from the game
 if (g instanceof Brick) {
 remove g;
 }
5. /** = the level of nesting of parentheses in s.
 Throw an IllegalArgumentException with message
 "unbalanced parens" if unbalanced parens. */
public static int level(String s) {
 // Store in n the level of nesting of parentheses in s,
 // but throw the exception if unbalanced
 int op= 0;
 int n= 0;
 // inv: s[0..k-1] is balanced except that it has op
 // '(' with no matching ')'.
 // n = level of nesting of parentheses in s[0..k-1].
 for (int k= 0; k != s.length(); k= k+1) {
 if (s.charAt(k) == '(') {
 op= op + 1;
 n= Math.max(n, op);
 } else if (s.charAt(k) == ')') {
 if (op == 0)
 throw new IllegalArgumentException
 ("Unbalanced parens");
 op= op - 1;
 }
 }

 //post: s[0..s.length()-1] is balanced except that it
 // has op '(' with no matching ')'.
 // n = level of nesting of parentheses in s.
 if (op > 0)
 throw new IllegalArgumentException
 ("Unbalanced parens");
 return n;
}

6. (a) Put field name in HDItem, since every file and
directory has a name. Put field items in class
Directory, since only directories and not files have
items. Put field in in HDItem, since all files and

CS1110 Sample answers to Final Fall 2010

directories (except for the top one) are in another
directory.

(b) Field items should be non-static, since each
directory can have different contents from other
directory instances.

(c)

/** = "obj is an HDItem with same name as this one"*/
public boolean equals(Object obj) {
 if (!(obj instanceof HDItem))
 return false;
 return ((HDItem)obj).name.equals(name);
}

(d) We would declare path in HDItem, and make it
abstract, for two reasons: (1) all subclasses would have
to declare it. (2) A call v. path() would be legal no
matter what the apparent type of v (as long as it is one
of the 4, of course). In HDItem, there is no way to
know what the complete path is, so it should be made
abstract.

(e) The bodies of path:
(1) in Directory: return in.path() + name + "/";
(2) in TopDirectory: return name + "/";
in File: return in.path() + name;

(3)

7.

(Cross this
frame out)

8 (a).
try {
 x= x/y;
} catch (ArithmeticException e) {
 System.out.println("Whoops, you divided by 0");
}

8 (b). 1. Declare the appropriate method in some class
C. 2. Indicate syntactically that class C contains the
method declaration (usually through the use of an
“implements” clause, which we haven’t learned too
much about. 3. Register an object of class C as a
listener for the JFrame.

8 (c).

CS1110 Sample answers to Final Fall 2010

female: L1 L3 L4 C

 n 1 f 1

female: L1 L2 C

 n 0 f

male: L5 C

 x 1 m

 b x1

 x1

 int[][]

0 x2

1 x3

 x2

 int[]

0 1

1 3

2 5

 x3

 int[]

0 2

1 4

