CS 1110, LAB 9: ENCAPSULATION AND DATA

Name: Net-ID:

There is an online version of these instructions at
http://www.cs.cornell.edu/courses/cs1110/2012fa/labs/1lab9

You may wish to use that version of the instructions.

his lab gives you some experience with encapsulation and abstraction. It also contains a recursion problem,
to give you some more practice for the upcoming exam. The concepts of this lab were, believe it or not, part
of assignments A1l and A3 in previous semesters of this course.

The lab this week is a little longer than the last one. But you should definitely try to finish it before next
week because it provides some good practice for the exam (particularly the recursion question).

Requirements For This Lab. The very first thing that you should do in this lab is to download the file
lab9.py from the course web page:

http://www.cs.cornell.edu/courses/cs1110/2012fa/labs/1ab9/1ab9.py

You will note that this file ontains a class Person as a well as a function test. The test function is
essentially a unit test for this lab. In many cases, it is not necessary to have a separate file for a unit test;
you can just put the test in the same file as everything else. To run the unit test on this class, simply type

python 1lab9.py

to run the module as an application. If you run it right now, you will see that it fails right away, because
Person is incomplete.

In addition, we are using simple assert statements for our unit test, not assert_equals from cunittest.
This is also okay; it cuts down on the number of files we give you. Outside of this class, in the real world,
this would be an acceptable way to construct a unit test.

In this lab, you will modify the class Person in 1ab9.py, You do not need to modify the unit tests, just
the class. When you are done, simply show these two files your lab instructor. As always, you should try
to finish the lab during your section. However, if you do not finish during section, you have until the
beginning of lab next week to finish it. You should always do your best to finish during lab hours;
remember that labs are graded on effort, not correctness.

1. LAB INSTRUCTIONS

The class Person is meant to represent an entry into a geneological database. The object stores the name
of the person, as well the mother and father, and the children for that person. The mother and father are
additional Person objects stored in fields (much like the Worker object could store another Worker object in
its boss fields). The children attribute is a list of Person objects. When you hook Person objects together,
you will get a family tree much like the picture shown below.

1


http://www.cs.cornell.edu/courses/cs1110/2012fa/labs/lab9
http://www.cs.cornell.edu/courses/cs1110/2012fa/labs/lab9/lab9.py

2 CS 1110, LAB 9: ENCAPSULATION AND DATA

John Smith Sr. H Pamela Grey ‘ ‘Vw 7?7 M ‘ Dan O’Reilly H Heather Chase ‘
John Smith Jr.

Jane Dare ‘ John Evans ‘ Ellen O’Reilly ‘

John Smith III Ellen Evans | p.mother

p.father

John Smith IV

=)

If you look at the class Person, you will see hidden fields for all of these attributes, as well as properties
that provide getters (and sometimes setters) for each of them. Most of the properties are immutable, except
for mother and father. And the setters for those are not yet implemented.

Task 1: Complete the setters for mother and father.

Note that while mother and father are mutable, children is not. That is because we need these values
to be consistent with one another. If object q is in the mother field of object p, then object p should be in
the list of children of object g.

This is very similar to the problem with farenheit and celsius from the Temperature class shown in class.
You are used to invariants being limited to the type or range of a single attribute. But invariants can also
specify the relationship between two attributes. In that case, the setter for each attribute should ensure that
the relationship between the two attributes remains preserved.

In this example, when we change either the mother or the father attribute, we need to change the children
in the mother or father as well. We have spelled out how to do this in the comments of these setters. The
final code should five lines long; each comment corresponds to a line of code. The code for each setter will
be identical except for self. mother being replaced by self. _father and vice versa.

Even though the comments spell out how to do this, here are some more hints to make this go quickly.

Use list methods to modify the children attribute. You want to use the following to methods to
add or remove children:

Method Description
children.append(p) | Adds p to this list of children.
children.remove(p) | Removes the first occurence of p from this list.

In the case of remove, each child should appear at most once in the list of children. Therefore, a single
remove will remove all occurrences.

Do not use children; use _children. You will notice that every time you call the getter for children it
makes a copy of the list. So if you try to use

self.children(p)

it will add to the copy and not the original list of children. If you want to add to the actual list of children,
use the field _children instead.



CS 1110, LAB 9: ENCAPSULATION AND DATA 3

Why do we do this? Because we want children to be immutable. Even though there is no setter for
children, you could still modify the contents of children since a list is itself mutable. This negates the
whole purpose of making children immutable. So the getter gives a copy of _children, which can be
modified without affecting this object. Modify the original, not the copy.

Remember to modify the children of the parents. You might be tempted to write the following:
self._children.append(self)

If you do this, you are claiming that the current object (self) has itself as its own child. While this is the
subject of many interesting science fiction novels, it is not what we want here. Modify the _children fields
in the parents.

The setter has to handle None. None is a valid value for a mother or father. None means that the
appropriate parent is unknown. Even if we had an actual value for that parent at one time, we may reassign
it to None later (perhaps on the revelation that this person was adopted). You have to be prepared for this,
as you cannot access the _children field in None

Testing it Out. To test out your code, simply run 1ab9.py as an application. If you have done it correctly,
you should see the following output:

Family Tree
Smith,John [0 kids]
Evans,Ellen [1 kid]
0'Reilly,Ellen [1 kid]
Chase,Heather [1 kid]
0'Reilly,Dan [1 kid]
Evans,John [1 kid]
Smith,John [1 kid]
Dare,Jane [1 kid]
Brown,Eva [1 kid]
Smith,John [1 kid]
Grey,Pamela [1 kid]
Smith,John [1 kid]

Properties mother and father working correctly

The program should then fail immediately afterwards. That is okay; that error message is about the test
for the next task.

Task 2: Complete the method familyNamed.

Recall the famiy tree created when we link objects together, which was illustrated on the previous page.
Up until now, our use of recursion has been limited to sequences. But we can use recursion on this family
tree as well. Note that “ancestor” has a recursion definition.

e The mother or father of a Person an ancestor

e The mother or father of an ancestor is an ancestor

Given this recursive definition, we can use recursion to define the following function.



4 CS 1110, LAB 9: ENCAPSULATION AND DATA

def familyNamed(self,name):
"""Returns: number of family with name as first name.

The number of family members includes this person
(e.g. self) as well as all family members. You should
implement this method recursively.

Precondition: name is a string."""

In the family tree shown on the previous page, p.familyNamed('John') is 5 (remember to count p as well),
while p.familyNamed('Ellen') is 2.

Write this recursive function. In order to figure out how to do this, you might find the method fullstr
above it to be quite useful. This is a recurisve procedure that creates a string representing the entire family
tree, indenting four spaces at each generation. In fact, you should recognize it, as it is what produced the
output in the previous task.

When you are finished, run 1ab9.py again as an application. If you did it correctly, the output should
end with the message

Method familyNamed working correctly

At this point show your 1lab9.py to your instructor.



	Requirements For This Lab
	1. Lab Instructions
	Task 1: Complete the setters for mother and father
	Task 2: Complete the method familyNamed


