
CS 1110, LAB 8: SUBCLASSES

Name: Net-ID:

There is an online version of these instructions at

http://www.cs.cornell.edu/courses/cs1110/2012fa/labs/lab8

You may wish to use that version of the instructions.

This lab demonstrates the power of subclasses, particularly in GUI applications. Subclasses are a great
way to customize visual behavior of a GUI object. In addition to basic subclasses, you this lab will also give
you some experience with the use of the super function.

The lab this week is quite short because you also have an assignment due this next week with a very short
turn-around. In fact, you will find you spend more time reading the lab than doing it.

Requirements For This Lab. There are several files necesssary for this lab. You should create a new
directory on your hard drive and download the following four files into this directory:

• lab8app.py (http://www.cs.cornell.edu/courses/cs1110/2012fa/labs/lab8/lab8app.py)
• lab8.py (http://www.cs.cornell.edu/courses/cs1110/2012fa/labs/lab8/lab8.py)
• shapes.py (http://www.cs.cornell.edu/courses/cs1110/2012fa/labs/lab8/shapes.py)
• colormodel.py (http://www.cs.cornell.edu/courses/cs1110/2012fa/labs/lab8/colormodel.py)

To use these files, put them all in a single directory and run lab8app.py as an
application. That is, open a command prompt and type

python lab8app.py

A figure like that on the right should appear in the window. Your command prompt
will fill with the usual messages from Kivy. In addition, you should see some test
ouput about the various shapes that are drawn in the window.

This lab will involve the modification of two of the above files: lab8.py and
lab8app.py. There is no unit test for this lab. When you are done, simply show
these two files your lab instructor. As always, you should try to finish the lab during
your section. However, if you do not finish during section, you have until the
beginning of lab next week to finish it. You should always do your best to
finish during lab hours; remember that labs are graded on effort, not correctness.

1. Understanding the Application

Before you get started on this lab, we should first describe a bit how lab8app

works. If you open it up you will notice that it contains two classes. The first is
Lab8App; it is a subclass of the Kivy class App and has a single important method:

1

http://www.cs.cornell.edu/courses/cs1110/2012fa/labs/lab8
http://www.cs.cornell.edu/courses/cs1110/2012fa/labs/lab8/lab8app.py
http://www.cs.cornell.edu/courses/cs1110/2012fa/labs/lab8/lab8.py
http://www.cs.cornell.edu/courses/cs1110/2012fa/labs/lab8/shapes.py
http://www.cs.cornell.edu/courses/cs1110/2012fa/labs/lab8/colormodel.py


2 CS 1110, LAB 8: SUBCLASSES

run(). This run() method is called in the application code of this module, and is what opens up a new
Window.

By itself, Lab8App just draws a blank window. The second class, Panel represents the contents of the
Window, and it is responsible for drawing the figure above. When the application is built, a Panel object is
“placed inside” the Window. The constructor for Panel calls the method drawShapes(), which draws the
figure you see.

The method drawShapes() creates several objects, all of which are subclasses of class Shape. The Shape

class, which is defined in the module shapes.py, contains information about the position of the shape, as
well as its size and geometry. When the method draw() is called, the shape is added to the panel and
remains there until you quit the application.

Like the Turtle in Aassignment 4, the values of x and y, as well as the side lengths, are given in pixels. In
this application, the pixels are indexed by integer coordinates starting at the bottom left corner, as follows:

...

(0,2) (1,2) (2,2) ...

(0,1) (1,1) (2,1) ...

(0,0) (1,0) (2,0) ...

In a pixel coordinate (x,y), x is the horizontal coordinate; it increases from left to right. Similarly, y is the
vertical coordinate; it increases from bottom to top. This is similar to how the Turtle worked, except in that
case the origin was in the middle of the Window, not the bottom left as it is here.

All of the shapes in this lab are subclasses of the class Shape. The class Shape has several attributes
(many of which it inherits from Widget, a Kivy class) that position it correctly inside of the Panel. However,
the primary method for drawing a shape is called draw(). You will notice that the body of this method in
Shape says pass; which means it is undefined. This is why we never create an object whose type is simply
Shape. All of the drawing is done in the subclasses, which are listed below.

Class Subclass Of Description
Parallelogram Shape Four sided shape where each pair of opposing sides is parallel.
Line Shape Line segment between two points.
Rhombus Parallelogram Parallelogram where all four sides are equal length.
Square Rhombus Rhombus where all angles are right angles.

You should now look at the documentation of Parallelogram (which is in shapes.py) to see how it
works. You can either look at the source code directly, or import the module and use the help() function as
shown in class. You should pay particular attention to the concept of the “leaning factor” in the definition
of a parallelogram.

2. Lab Instructions

This lab is broken up into two tasks, the first of which is quite short.

Task 1: Complete the Constructors. The image in the window is incomplete. Right now, only
Parallelogram and Line draw properly. That is because the constructors in Rhombus and Square are
incomplete. If you open the lab8.py file, you will see that both of their init methods have pass as their
body.



CS 1110, LAB 8: SUBCLASSES 3

This is unacceptable. At the very least, each of these subclasses must call the init method in their
parent class as a helper function. In this case, this is all we need. The class Parallelogram does all the
work for drawing, so we just need to be sure to (eventually) invoke its init as a helper.

Of course, we cannot call init simply by invoking self. init (). That is because we are overriding
init in each of these classes, and so this will call the new version of init (thus putting us in a recursive

loop). We need to use the super function to call the init in our parent class.

We showed you how super works in class. It is a function that takes two argu-
ments: a class name and an object (which is always self). It returns the partition
corresponding to the parent class of the one specified. So, for example,

super(Parallelogram,self)

returns the Shape partition of self (as that is the parent class of Parallelogram.
Similarly,

super(Rhombus,self)

returns the Parallelogram partition of self.

Use this to complete the constructors of Rhombus and Square. Each constructor
should be a single line using super and init together. When you are done, run
lab8app.py as a application again. You should now get the image on the right.

Task 2: Add Some Arms. The shape above looks almost like a person. It has a
head (the Parallelograms), a body (the Square), and some legs (the Rhombuses).
You will give the person arms. All the changes you will make will be in class Panel

in module lab8app.py. Read through method drawShapes() of Panel.

But before you do anything else, you should comment out the code that produces
the two black lines (in DemoShapes).

Hint: look for where the color is set to black.

Each arm is should be a green rectangle that is 60 pixels long and 20 pixels high. Its leaning factor
(field d of class Parallelogram) is 0, which means that it is a rectangle. The leaning factor is defined in the
specification of Parallelogram. Later, when you get the program going with leaning factor 0, you can try
a different leaning factor, say 15, and see what it looks like.

The arms should be attached at the top right and top left of the square
that makes up the body. The tops of the arms should be parallel to the top
line of the square. When done, it should look like the image to the right.

In writing the code that draws these rectangles, use the variables that are
defined at the top of method drawShapes(). Also, use variables to contain
all the constants that you need, as we did in method drawShapes(). You
should avoid using numbers directly in the constructor Parallelogram.

Hint: to figure out the coordinates for the arms, look at the positioning
of the green square. For debugging purposes, you may want to include print
statements to see important values for the objects you create, like we did.

When you are finished, show lab8app.py and lab8.py to your instructor.


