CS 1110, LAB 3: FUNCTIONS AND TESTING

Name: Net-ID:

There is an online version of these instructions at
http://www.cs.cornell.edu/courses/cs1110/2012fa/labs/1lab3

You may wish to use that version of the instructions.

The purpose of this lab is to get you used to writing functions, and to introduce you to the basics of
testing. As a warning, we will tell you right now: The module pointfuncs has errors in it; do not look
for them and test them in the beginning. You should only correct the module when you are told. The
point of this lab is get you in the habit of testing your programs. Adopting this testing habit will prove to
be unbelievably useful, particularly for the first assignment.

Requirements For This Lab. We have created a few files for this lab. You should create a new directory
on your hard drive and download the following modules into that directory:

e point.py (http://www.cs.cornell.edu/courses/cs1110/2012fa/labs/1ab3/point.py)

e pointfuncs.py (http://www.cs.cornell.edu/courses/cs1110/2012fa/labs/1lab3/pointfuncs.py)
e cunittest.py (http://www.cs.cornell.edu/courses/cs1110/2012fa/labs/lab3/cunittest.py)

e testfuncs.py (http://www.cs.cornell.edu/courses/cs1110/2012fa/labs/1ab3/testfuncs.py)

The first two modules are the code that you will be testing. The module point provides a new type,
called Point. We describe this type below, but you do not need to understand the contents of this file. The
most important module is pointfuncs. This is the module that has mistakes, and you will (eventually) need
to fix them.

The second two modules are used for testing. You will find that the module cunittest will be a valuable
tool for you throughout the semester. This module contains the unit testing functions assert_equals and
assert_true that we showed off in class. The second is a skeleton module (e.g. there is really nothing in
it); it is where you will write your unit tests to find the errors in pointfuncs.

This lab will involve three different components. First, you will need to write answers to the questions
that we pose below. Second, you will need to write a new module that is a unit test for pointfuncs. Finally,
you will need to modify the contents of pointfuncs to fix the mistakes. When you are done, you should
show all three to your lab instructor, who will record that you did it. You do not need to submit the paper
with your answers, and you do not need to submit the computer files anywhere.

As always, if you do not finish during the lab, you have until the beginning of lab next week to
finish it. You should always do your best to finish during lab hours. Remember that labs are graded on
effort, not correctness.

1. THE MODULE POINT

The module point provides a new type: Point. While this type is important for this lab, the contents of
this module are not. In fact, you will not learn how to read a module like this until much later in the course.
Instead, we describe this type here.


http://www.cs.cornell.edu/courses/cs1110/2012fa/labs/lab3
http://www.cs.cornell.edu/courses/cs1110/2012fa/labs/lab3/point.py
http://www.cs.cornell.edu/courses/cs1110/2012fa/labs/lab3/pointfuncs.py
http://www.cs.cornell.edu/courses/cs1110/2012fa/labs/lab3/cunittest.py
http://www.cs.cornell.edu/courses/cs1110/2012fa/labs/lab3/testfuncs.py

2 CS 1110, LAB 3: FUNCTIONS AND TESTING

Objects of type Point are points in a 3-dimensional space. These objects have three attributes: x, y,
and z. These attributes correspond to the 3 coordinates. Point objects do not have any methods that are
relevant to this lab.

Like the Window type in the previous lab, you create Point objects with a constructor. The constructor
Point takes three arguments to set the coordinates x, y, and z. For example, the constructor call

Point(2,1,0)

creates a Point object (2,1,0) and returns the name of the object.

2. CREATING A UNIT TEST

For the first part of the lab, you will create a unit test to test the functions of module point-funcs. You
will start by testing the procedure shift(p). You are to continue testing, until you get no error messages.
In this section we take you through this process, step-by-step.

2.1. Create the Unit Test Module. For the first part of the lab, you will create a unit test to test the
functions of module pointfuncs. You will start by testing the procedure has_a_zero. This function should
return true if at least one of the x, y, or z coordinates in the point p is 0. If none of them are zero, it returns
false.

That is what the specification says, but the function has a bug and does not work correctly. You are to
test the program to find the bug. Some of you may see the error right away, but do not fix it. The purpose
of this lab is to teach you testing. So we are going to take you through this process, step-by-step.

2.2. The Unit Test Module testfuncs. A unit test is a special module that is used to test other modules.
We have provided you a file to get started — testfuncs.py — but it does not have any significant code in it
yet. It just has the initial comments at the top of the module (and you should put your name in the right
comment). It also has some import statements.

The file also imports cunittest. This module provides the functions assert_equals and assert_true
which you will use in unit testing. You will note that we have used the normal import keyword to import it,
so all calls of those functions will need cunittest in front of them (e.g., cunittest.assert_equals(...))
to work. We did this just to give you experience with both versions of import, not because it is necessary.

When you create future unit tests in this class (such as for the first assignment), they should start out
very much like this skeleton. You need to import the module cunittest to use the testing functions, which
means you will need a copy of the file cunittest.py in the directory that contains the code you are testing.
In addition, you obviously need to import whatever module you are testing.

2.3. The Application Code. Unit tests are applications. An application is a Python module that executes
when you type

python module-name

from the command shell. You can also run an application by having its window as the active window in
Komodo Edit and pressing the “run button.”

An application ends in a very special bit of code that starts

if _name__ == "_main__":



CS 1110, LAB 3: FUNCTIONS AND TESTING 3

The code that executes when you run the application is indented directly under this line, like in a function
body. Right now, the application code should contain a single print statement, as follows:

if _name__ == "_main__":
print "Module point-funcs is working correctly"

Run the application. What happens?

2.4. Create the Test Procedure. You are going to create a procedure test_has_a_zero() which will test
the procedure has_a_zero(p). Right now, this procedure should just be a ”"stub” (e.g. it should not do
anything at all). To make a stub procedure, just put pass indented under the header. So right now, this
procedure should look like this:

def test_has_a_zero():
pass

Add a call to the procedure in the ”application code” (e.g. the code indented under if _ name__ ...).
Add the call before the print statement. The idea is that, if anything goes wrong in this test procedure, the
program will stop before printing out the final announcement.

2.5. Implement the Test Cases. In the body of function test_has_a_zero, write Python statements that
do the following:

e Create a Point object (0,0,0), using the constructor Point, and store the (name of the) object in a
variable p.

e Call has_a_zero(p) and put the result in a variable named result.

e (Call the procedure cunittest.assert_true(result).

If you want, you can combine the last two steps into a nested function call like
cunittest.assert_true(has_a_zero(p))

where p is a variable that contains the (name of) the point object. The important thing here is that
assert_true does nothing if the call has_a_zero(p) returns True, which it should because your point has
all zeros. If anything is wrong, then the assert_true function will stop the entire program and notify you
of the error.

You should run the unit test now. If you have done everything correctly, then the unit test should reach
the message "Module pointfuncs is working correctly" If not, then you have actually made an error
in the testing program. This can be frustrating, but it happens sometimes. One of the important challenges
with debugging is understanding whether the error is in the tester or the testee.

2.6. Add More Test Cases for a Complete Test. Just because one test case worked does not mean
that the function is correct. The function has_a zero can be ”true in more than one way”. For example, it



4 CS 1110, LAB 3: FUNCTIONS AND TESTING

is true when x is 0, but none of the other coordinates are. Similarly it can be true when just y is 0, or when
just z is 0.

We also need to test points that have no zeroes in them. It is possible that the bug in has_a_zero is that
it returns True all the time. If it does not return False when the point has no zeroes, it is not working either.

Clearly, there are a lot of different points that we could test — effectively infinitely many. The idea is to
pick test cases that are representative. Every possible input should be similar to, but not exactly the same,
as one of the representative tests. For example, if we test one point with no zeroes, we are fairly confident
that it works for all points with no zeroes. But testing (0,0,0) is not enough to test the other ways in which
test_a_zero could be true.

How many representative test cases do you think that you need in order to make sure that the function
is correct? Perhaps 6 or 7 or 87 Write down a list of test cases that you think will suffice to assure that the
function is correct:

In test procedure test_has_a zero(), Implement all these test cases in procedure test_has_a zero(),
using the assert_true function. If you want to test that something is False, use the not operator to make
the expression True so that you can use assert_true The test procedure may have to create more than one
instance of type Point in order to implement all of your test cases.

2.7. Test. Run the Python module testfuncs.py as an application. If an error message appears (so you
do not get the final print statement), study the message and where the error occurred (you will be provided
with a line number) to determine what is wrong. The error could be anywhere.

2.8. Fix and Repeat. You now have permission to fix the code in pointfuncs.py. However, you should
restrict your fixes to the function has_a_zero(p) only, as this is the only thing that you are testing. Do not
fix anything else yet.

Rerun the unit test as an application. Repeat this process (fix, then run) until there are no more error
messages.

3. TEST FUNCTION SHIFT(P)

The function shift(p) is actually a procedure. It does not return anything. Instead, this procedure
will change the contents of the object (e.g. the folder) whose name is in p. Read the specifications of this
procedure to understand what it does. Testing this will be a little different from testing has_a_zero.

In module testfuncs.py, you should make up another test procedure, test_shift (), that will test the
function shift(p). Make this procedure a stub for now. You should also add a call to this test procedure
in the application code, before the final print statement.



CS 1110, LAB 3: FUNCTIONS AND TESTING 5

3.1. Implement the First Test Case. This procedure should take a point, and ”shift” all of the coordi-
nates to the left (with the x coordinate moving to the z coordinate). To test this out, you need to add the
following code to test_shift.

e Create a Point object (0,0,1), using the constructor Point, and store the (name of the) object in a
variable p.

e Call the procedure shift(p).

e Test that p is now the point (0,1,0).

The last step requires further details. You cannot write
p == (0,1,0)

This will return False. That is because (0,1,0) is a value of a type that we have not yet seen in class (and
will not see for a while). Technically, it is correct to use the test

p == Point(0,1,0)

However, as we will see later when we cover Classes, this dangerous and does not always work; you just
happen to be lucky that it would work in this specific case. Instead, we would prefer that you check each of
the attributes — x, y, and z — separately.

This time you are testing variables with int or float values, not just boolean. To test this type of value you
need the function assert_equals. In assert_equals, you have a value that you expect which you compare
against the value that you actually get. So to check that p is the point (0,1,0), you would add the following
statements:

cunittest.assert_equals(0,p.x)
cunittest.assert_equals(l,p.y)
cunittest.assert_equals(0,p.z)

Add these test cases to the test procedure test_shift and run the unit test as an application. There
should not be an error this time; check your test procedure if you run into any problems.

3.2. Add More Test Cases for a Complete Test. Obviously, the point (0,1,0) is not enough to test
this function; we told you there was an error, and you have not found an error yet. Why is this point not
sufficient to test the function shift?

What are good points for testing out this function?




6 CS 1110, LAB 3: FUNCTIONS AND TESTING

Implement the test case(s) you chose, and run the unit test as an application. You should get an error
message this time.

3.3. Isolate the Error. Unit tests are great at finding whether or not an error exists. They are not always
great at telling you where the error occurred. The procedure shift has three lines of code. The error could
have occurred at any one of them.

In programming, we often use print statements to help us isolate an error. Recall in the last lab that
you were asked to write a sequence of assignment statements where you extracted a substring contained in
quotes. If we ran into problems, we suggested that after every print statement you put

print war

where var is the name of the variable in the assignment statement just above it. This will help you ” visualize”
what is going on. Everytime a variable is created or changes value, it is important that the new value is
what you expect it to be.

Open up pointfuncs and add these print statements to the function shift(p) (not test_shift()), one
after each of the three assignment statements. Now run the unit test. Before you see the error message, you
should see three numbers print out. Those are the result of your print statements.

To make them easier to understand, sometimes we like to add more information to the print statement,
such as

print "The variable p.x is "+‘p.x‘

If you want to make that change, fine. You should do whichever you are most comfortable with.

3.4. Fix and Test. You should now have enough information from these three print statements to see what
the error is. Fix the error and test the procedure again by running the unit test.

3.5. Clean up shift(p). Unlike unit tests, using print statements to isolate an error is quite invasive. You
do not want those print statements showing information on the screen every time you run the procedure. So
once you are sure the program is running correctly, you should remove them. You can either comment them
out (fine in small doses, as long as it does not make your code unreadable), or you can delete them entirely.

However, once you remove these, it is important that you test the procedure one last time. You want to
be sure that you did not accidentally delete the wrong line of code by accident.

Once you have removed all the print statements, and the unit test runs without errors, you are done with
this procedure.

4. TEST FUNCTION PARSE(S)

Read the specification for parse. This function takes a string like 7 (1,2,3)” and turns it into the equivalent
point object. You should try to understand this function thoroughly, as it is very relevant to the first
assignment.

Create a stub for a test procedure called test_parse() and add a call to it to the application code, just
like you have done for the prior two parts of the lab.



CS 1110, LAB 3: FUNCTIONS AND TESTING 7

4.1. Implement the First Test Case. Testing this function is very similar to testing shift(p). The
primary difference is that parse(s) is a function that returns a new point, not a procedure that modifies
an existing point. So your test cases should be testing the point that parse(s) returns, not the string you
pass to it. So your first test case should do the following.

e (Call parse("(1,2,3)") and assign the result to a variable p
e Test that p is now the point (1,2,3).

Follow the steps from test_shift () for the second step.

4.2. Oops. Something bad happened. You did not get the nice error message from assert_equals this
time. Python was not able to complete processing the function and gave you an error that looks like this:

File "pointfuncs.py", line 65, in parse
p.y = float(ystring)
ValueError: could not convert string to float:

On some computers, the error might instead be empty string for float().

In the previous examples, Python just gave you the wrong answer. This time it crashed (And you can
tell it crashed because there is no ”Quitting with Error”).

Unit testing is not going to help you find an error like this. And the line number in the error message is
no help either. That is just where Python found the error; the mistake could have been made earlier.

Once again, you need to isolate the error with print statements. After every single assignment statement,
add a print statement displaying the value of the variable in the assignment statement above it. Run the
unit test and look at what is displayed on the screen.

This should be enough information for you to find the error. The error here is a legitimate mistake that
you might make in a function like this; we made it ourselves when we wrote this function, and then left it in
for the lab. If you cannot find the error now, ask a consultant or instructor for help.

4.3. Fix and Test. Once you find the error, fix it. Run the test again, and fix it again if necessary. It is a
good idea to leave the print statements in until you are sure that the function is correct. However, when it
is correct, you should remove all of the print statements inside of parse (and test one last time!).

5. ADD THE FUNCTION FIRST_INSIDE_QUOTES(S)

You may notice that pointfuncs has a specification for a function called first_inside_quotes(s). If a
string s contains at least two double quotes inside of it, this function returns the substring within the first
pair of such quotes.

This might seem familiar. We asked you to do something like this on the last lab. The only difference is
that now we are asking you to write it in function form. You will find this function incredibly useful for the
first assignment.

Once you are done implementing the function, add one last test procedure: test_first_inside_quotes().
Make sure that your function is correct. When you are satisfied, you are done with the lab.



	Requirements For This Lab
	1. The Module point
	2. Creating a Unit Test
	2.1. Create the Unit Test Module
	2.2. The Unit Test Module testfuncs
	2.3. The Application Code
	2.4. Create the Test Procedure
	2.5. Implement the Test Cases
	2.6. Add More Test Cases for a Complete Test
	2.7. Test
	2.8. Fix and Repeat

	3. Test Function shift(p)
	3.1. Implement the First Test Case
	3.2. Add More Test Cases for a Complete Test
	3.3. Isolate the Error
	3.4. Fix and Test
	3.5. Clean up shift(p)

	4. Test Function parse(s)
	4.1. Implement the First Test Case
	4.2. Oops
	4.3. Fix and Test

	5. Add the Function first_inside_quotes(s)

