10/5/11

Developing loops
from invariants

CS1110 Final Review

Info

* My name:
* Feel free to ask questions at any time
* Slides will be posted online

Outline

* 4 questions for loop

* How to develop loops from invariants
* Common mistakes

* What's in the exam

Four loopy questions

. How does it start (does the initialization make

the invariant true?

. When does it stop (the invariant together with

falsity of the guard should imply the
postcondition)?

. Does the repetend make progress toward

termination?

. Does the repetend keep the invariant true?

Developing a for-loop

Develop a for-loop when you recognize that a
range of integers a..b has to be processed.

The steps we propose for developing the loop
allows it to be developed with a minimum of
fuss and a maximum chance of success. The
development of most of the loop is almost
mechanical, allowing you to focus on the
difficult, creative parts.

Developing a for-loop-(a)

Suppose the command you are trying to
implement is

Process a..b

* Write the command as a postcondition:

post: a..b has been processed.

Developing loops-(b)
* write the loop:

for (int k= a; k <= b; k= k+1) {
//Process k
}

// post: a..b has been processed.

10/5/11

Developing loops-(c)
* Fillin the invariant

// invariant: a..k-1 has been processed
for (int k= a; k <= b; k="k+1) {

Process k
}

// post: a..b has been processed.

Developing loops-(d)
* Fix the initialization

init to make invariant true;
// invariant: a..k-1 has been processed
for (int k= a; k <= b; k= k+1) {

Process k

}

// post: a..b has been processed.

Developing loops-(e)
* Figure out how to "Process k"

init to make invariant true;
// invariant: a..k-1 has been processed
for (int k= a; k <= b; k=k+1) {
// Process k
implementation of "Process k"
}

// post: a..b has been processed.

Range

* Pay attention to range:
a.b or a+l.b or a..b-1 or..

* To process a range a..b-1, change the loop
conditiontok<b

* Note that a..a-1 denotes an empty range
—no values in it

Spring’08-Prelim3 Question 3

* A magic square is a square where each row and column adds up to the

same number (sometimes, one also includes the diagonals, but for this
problem, we won't). For example, in the following 5-by-5 square, the
elements in each row and column add up to 70:

18 25 2 9 16
24 6 8 15 17

5 7 14 21 23
11 13 20 22 4
12 19 26 3 10

/%% = all the rows of square array = sum to sur”
Precondition: = is not null and indeed is a square array. */
public static boolean areMagicRows (int[][] =q, int sum) {

// invariant: each row 0. .k-1 of s sums to sum.
for (intk=0:k <sqlength;k=k~+1];
// Return false if row k does not sum to sum.
int rowsum= 0;
for (int j= 0; j < sq.length; j=j + 1) {
rowsum= rowsum + sq[k][j];
¥
if (rowsum != sum)
return false;

}
// postcondition: eachrow 0. .sqg.length-1 sums to sum

return

10/5/11

While-Loop

for (int k= a; k <= b; k= k+1) {...S...}

intk=a;
while (k <= b) {

You will not be asked to
develop the invariant for a
S; while-loop (unless it is one
k= k+1; of the algorithms you must
} know). You may be asked
to develop one given the
invariant.

Another example

* Prelim 3 Question 4. Addition of 2 numbers

h=? 01
k=? 4

carry=? 5

o g

-
w

(ST,

//invariant: b[h..] contains the sum of c[h..] and d[k..],
except that the carry into position k-1 is in

‘carry’

While (){

}

//postcondition: b contains the sum of c and d

/! except that the carry contains the 0 or 1 that
/! belongs in the beginning

DOs and DON'Ts #1

* DO use variables given in the invariant.
* DON’'T Use other variables.

//invariant: b[h..] contains the sum of c[h..] and d[k..],

except that the carry into position k-1 is in
‘carry’

//use h, k, carry
// you can declare variables here

DOs and DON’'Ts #2

* DO understand invariants first
— x = some function of b[A..k-1]
* For (int k=A,....;k=k+1)
— X=some function of b[k..b.length-1]
* For (int k=b.length;...;k=k-1)

h=c.length

k=d.length

carry=0

//invariant: b[h..] contains the sum of c[h..] and d[k..],
except that the carry into position k-1 is in

‘carry’

While (h>0) //why is not >=0?

DOs and DON’'Ts #3

* DO double check corner cases!
— for (x=0; x<b.length; x++)
* What will happen when x=0 and x=b.length-1?

« If you use x in array, e.g. a[x], will x always be between
0...a.length-1?

h=c.length

k=d.length

carry=0

//invariant: b[h..] contains the sum of c[h..] and d[k..],
except that the carry into position k-1 is in

‘carry’

While (h>0) {

h--; k--; //directly using b[h] or c[h] or d[k] is wrong!
}

10/5/11

DOs and DON’Ts #4 What's in the exam
* DON’'T put the variable directly above the * Array diagrams, invariant from pre- and post-
vertical line.

condition, initialization, body of loop, etc.

* We will NOT ask you to write a loop invariant

// Where is k? for a while-loop EXCEPT:

Linear search, binary search, dutch national flag,
v k partition algorithm of quicksort, insertion sort,
and selection sort:
Questions?

