CS 1110 Final Exam
Recursion Review

May 11, 2011

Important Steps

1. Precise Specification

¢ What does the method do?

¢ What are the preconditions?
2. Write the base case

e What is the most basic case?

¢ What causes termination of the recursive method?
3. Write the recursive case

¢ How do we make progress toward termination?

¢ Isyour computation correct?

Writing Specifications

© Write a specification for a Method that:

3. Compresses a String such that duplicate letters are
replaced with counts.

ie. aaabbbbbbccd -> azb6c2d1

/** = s compressed such that duplicates are replaced with the count
of how many occurrences that character has in a row.*/

4. Converts an input integer to a string representation with
commas. ie. 5923821 is converted to 5,923,821.
/** = String representation of integer with commas added*/

11/5/11

What we’ll do today

* Practice writing recursive specifications and functions
e Given a recursive problem definition
» Determine a proper specification (note preconditions)

¢ Given a problem description and specification:
= Write the recursive base case
« Write the recursive call
« Verify that it is correct

Questions?

Writing Specifications

© Write a specification for a Method that:

1. Computes the complement of a positive integer.
ie. The complement of 12345 is 98765.

/** = the complement of n, formed by replacing each decimal digit of n by
10-n. ie. the result for the integer 93723 is 17387.
Precondition: n > 0 and no digit of n is 0 */

2. Reduce the positive input integer to a single digit.
ie. 472 -> 47+2 =49 -> 4+9 =13 -> 143 =4
/** = nreduced to a single digit (by repeatedly summing its digits).
Precondition: n > o */

Complement of an Integer

/** = the complement of n, formed by replacing
each decimal digit of n by 10-n.
ie. the result for the integer 93723 is 17387.
Precondition: n > o and no digit of niso *
public static int complement(int n) {
// Base Case

if (n <10)
return 10 - n;

// Recursive Case

return complement(n/10) * 10 + (10 - n%10);

Spring 2008 Prelim 3

/** = n reduced to a single digit (by repeatedly
summing its digits).
Precondition: n > 0 */
public static int addUp (int n) {
// Base case
if (n <10)
return n;

How do we know this
works?

return “x reduced to a single digit
(by repeatedly summing its digits)”

Spring 2010 Final Exam

/** = s compressed such that duplicates are replaced with the count of how many
occurrences that character has in a row.
ie. "aaaaabbbbbccccccaaax” is compressed to "asbsc6azxi */
public static String compress(String s) {
// Base case
if (s.equals(“”))
return “”;
/ Recursive Case
int x = eqChar(s)
return " + s.charAt(o) + x + compress(s.substring(x));

}

/**= the number of times the first character in s occurs in a row at the start of the
Strings. */

public static int eqChar(String s) {...}

11/5/11

Problem: Properly add commas to an integer and return the string
representation. ie. 5923821 is converted to 5,923,821.

/** = String representation of integer with commas added*/
public static String addCommas(int n) {

// Base case

if (n <1000)

return “” + n;

// Recursive Case

String number ="
return addCommas (n/1000) +",“ +

number.substring(number.length()-3);

En;

Is something wrong?

An extra problem...

Given:
Class FacebookProfile
public String getName();
public Vector<FacebookProfile> getFriends();

We want to answer the question:

Is this FacebookProfile at most 6 degrees away from Kevin
Bacon?

Specification:

/** = “this FacebookProfile is at most 6 degrees away from Kevin
Bacon” */

Problem: Properly add commas to an integer and return the string
representation. ie. 5923821 is converted to 5,923,821.

/** = String representation of integer with commas added*/
public static String addCommas(int n) {

if (n < o) return "-" + addCommasHelper(-n);

else return addCommasHelper(n);

/** = String representation of a positive integer with commas added.
Precondition: n >= 0*/
private static String addCommasHelper(int n) {
// Base case
if (n < 1000)
return “” + n;
// Recursive Case
String number =" + n;

return addCommasHelper(n/1000) + ", + number.substring(number.length()-3);

6-Degrees of Kevin Bacon

J** = “this FacebookProfile is at most 6 degrees away from Kevin Bacon” */
public boolean sixDegreesOfKevinBacon() {
return sixDegreesHelper(6);

/** = “this FacebookProfile is at most n degrees away from Kevin Bacon” */
private boolean sixDegreesHelper(int n) {
/1 Base case
if (getName().equals(“Kevin Bacon”))
return true;
if (n == 0)
return false;
// Recursive Case
Vector<FacebookProfile> friends = getFriends();
for (int i=o; i<friends.size(); i++) {
if (friends.get(i).sixDegreesHelper(n-1))
return true;

return false;

11/5/11

/
Good Luck!

¢ Don’t Stress!

Questions?

 Take your time!

* Have a great Summer!

