
This assignment, including much of the wording of this document, is taken from 
an assignment from Stanford University, by Professor Eric Roberts. Your task is to 
write the classic arcade game Breakout. You can download our solution as a jar-file 
application and get a real taste for the game.

Please keep track of the time you spent on this assignment. We will ask for it when 
it is time to submit.

The assignment is easily within your grasp —as long as you start early,  break the 
problem up into manageable pieces, and program/test incrementally. Below, we dis-
cuss stages of implementation and give suggestions for staying on top of the project. 
If you follow our advice and test each piece thoroughly before proceeding to the next, 
you should be successful. Our solution is ~335 lines long and has 11–12 methods.

Breakout

The initial configuration of the game Breakout is shown above on the right. The 
colored rectangles in the top part of the screen are bricks, and the slightly larger rec-
tangle at the bottom is the paddle. The paddle is in a fixed position in the vertical di-
mension; it moves back and forth horizontally across the screen along with the mouse 
—unless the mouse goes past the edge of the window. 

A complete game consists of three turns. On each turn, a ball is launched from the 
center of the window toward the bottom of the screen at a random angle.  The ball 
bounces off the paddle and the walls of the world, in accordance with the physical 
principle generally expressed as “the angle of incidence equals the angle of reflec-
tion” (it’s easy to implement). The start of a possible trajectory, bouncing off the pad-
dle and then off the right wall— is shown to the right. (The dotted line is there only to 
show the ball’s path and won’t actually appear on the screen.) 

In the second diagram, the ball is about to collide with a brick on the bottom row. 
When that happens, the ball bounces just as it does on any other collision, but the 
brick disappears. The third diagram shows the game after that collision and after the 
player has moved the paddle to put it in line with the oncoming ball. 

The play on a turn continues in this way until one of two conditions occurs: 

1. The ball hits the lower wall, which means that the player missed it with the 
paddle. In this case, the turn ends. If the player has a turn left, the next ball is 
served; otherwise, the game ends in a loss for the player. 

2. The last brick is eliminated: the player wins, and the game ends. 

Clearing all the bricks in a particular column opens a path to the top wall. When 
this delightful situation occurs, the ball may bounce back and forth several times be-
tween the top wall and the upper line of bricks without the user having to worry about 
hitting the ball with the paddle. This condition, a reward for “breaking out”, gives 
meaning to the name of the game. The fourth diagram on the right shows the situation 
shortly after the first ball has broken through the wall. The ball goes on to clear 
several more bricks before it comes back down the open channel. 

Breaking out is an exciting part of the game, but you don’t have to do anything in 
your program to make it happen. The game is operating by the same rules it always 
applies: bouncing off walls, clearing bricks, and obeying the “laws of physics”.

Partners

You may work with one partner. Both of you should do what is necessary on the 
CMS to form a group several days before the submission deadline.  It is dishonest and 
against the code of academic integrity to split the work so that each does half of the 
work. You must work together the whole time.

Academic integrity

This assignment is similar to one given in previous offerings of CS1110. It is a violation of the Code of Academic 
Integrity for you to be in possession of or to look at code (in any format) for this assignment of anyone in this class 
or in previous classes of CS1110 or to show another student your program. Please do not violate the Code; penalties 
for this will be severe. We will try hard to give you all the help you need for this assignment.
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Getting help

Do not spend hours and hours trying to solve a single problem. Get help. The announcements page of the course 
website will contain discussions of general issues that arise. Look there before calling/emailing someone.

File Breakout.java 

We give you file Breakout.java. A partial skeleton of 
it appears to the right. The class includes:

• The import statements needed in writing the game. 

• Constants that control the game parameters, e.g.  the 
height of a paddle. Your code should use these con-
stants internally so that changing them in your file 
changes the behavior of your program accordingly. 

• A static method main that starts the application 
program, fixes bricks, and sets the window to the ap-
propriate size. Run the program by clicking button Run 
or by executing this in the interactions pane:

java Breakout

The acm package

You used this package in A5, so we don’t say much 
about it.  Here are API specs for the package: 
http://jtf.acm.org/javadoc/student/ index.html. So you 
can study the package while you are not on the internet, 
we provide the html files in downloadable form on the 
course website, but not all the images are included.

Class Breakout is a subclass of class Graphics-
Program, which is associated with the window on 
which the graphics takes place. Method main creates an 
instance of the class and then calls method start of the 
instance, which is inherited from GraphicsProgram.

GraphicsProgram also declares procedure run,  which is overridden in class Breakout. Execution of  
start(sizeArgs) constructs the basic GUI window and then calls procedure run. You have to write the body 
of run (and any other methods you need) to initialize the GUI with bricks, paddle, and ball and play the game. You 
have to write a class Brick. 

An important part of your programming will be to develop new methods whenever you need them, in order to 
keep each method small and manageable. No method should be over,  say, 50 lines long, and points will be deducted 
for methods that are too long. The design of your program is important.

You must provide a class invariant. You must specify each method precisely and thoroughly.  You need not write 
loop invariants, although doing so will help you. If you show your code to an instructor, TA, or consultant and they 
see a method that is not specified, they will ask you to go away, fix it, and come back at another time.

What to download

Download file Breakout.java from the course website and put it in a new directory. In the same directory, put a 
copy of directory acm that you used for assignment A5.

1. Set up the bricks

The first step is to write the code that puts the various pieces on the playing board. Thus, it probably makes sense 
to implement procedure run as two method calls: one that sets up the game and one that plays it. An important part 
of the setup consists of creating rows of bricks at the top of the game, which are shown on the next page.

The number, dimensions, and spacing of the bricks, as well as the distance from the top of the window to the first 
line of bricks, are specified using named constants given in class Breakout. The only value you need to compute 
is the x coordinate of the first column, which should be chosen so that the bricks are centered in the window, with 
the leftover space divided equally on the left and right sides. Hint: the leftmost brick should be placed at x-
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import acm.graphics.*;
...
/** The game breakout. Start it by executing
            java Breakout;  */
public class Breakout extends GraphicsProgram {
  /** Width of the game display  */
  private static final int WIDTH=  460;
  /** Height of the game display */
  private static final int HEIGHT=  610;
  /** Width of the paddle */
  private static final int PADDLE_WIDTH= 58;
  /** Height of the paddle */
  private static final int PADDLE_ HEIGHT = 11;
  /**Distance of the (...) paddle up from the bottom */
  private static final int PADDLE_OFFSET= 30;
  ...
  /** Run program as an application. ...  */
    public static void main(String[] args) {
        String[] sizeArgs= { "width=" + WIDTH, 
                                          "height=" + HEIGHT };
        fixBricks(args);
        new Breakout().start(sizeArgs);
    }
    /* Run the Breakout program. */
    public void run() { ... }
}

http://jtf.acm.org/javadoc/student/index.html
http://jtf.acm.org/javadoc/student/index.html


coordinate BRICK_SEP_H/2. The colors of the bricks remain constant for two rows and run in the following se-
quence: RED, ORANGE, YELLOW, GREEN, CYAN.

All objects placed on the playing board are instances of subclasses of abstract class GObject. The bricks and 
paddle are objects of subclass GRect. 

Write a subclass Brick of GRect and use objects of class Brick for the 
bricks. The reason for this will be given later. Class Brick has no fields and 
needs only two methods: (1) a constructor for a new brick of a given width and 
height and (2) a constructor for a new brick at a point (x,y) and of a given 
width and height. Class GRect has similar constructors.

To add GRect object r (say) to the playing board, call inherited procedure 
add(r). To start off, you might want to create a single Brick object of some 
position and size and add it to the playing board, just to see what happens. Then 
think about how you can place the 8 rows of bricks.

You need to fill a Brick (which is a GRect) with a particular color and also to set its color so that its outline is 
the same color (instead of black). Look for methods to do this.  In order to allow the object to be filled with a color, 
you need to use a procedure call like rect.setFilled(true);.

Here is an important point. Do not use an array or Vector to keep track of the bricks. Just add the bricks to the 
playing board as they are created, and do not be concerned about keeping track of them. Later, you will see why you 
don’t need to keep them in an array or Vector.

Here is another important point. Make sure your creation of the rows of bricks works with any number of rows 
and any number bricks in each row —1, 2, ..., 10, and perhaps more.

Here’s a suggestion: Get this part of the program working by 23 April,  so that you can produce just the diagram 
shown above to the right. This will give you considerable confidence that you can get the rest done.

2. Write method fixBricks

In checking out the program, to save time, it would be nice to play it with just 3-4 bricks per row and 1-2 rows of 
bricks. This will let you more quickly see whether the program works correctly when the ball breaks out (get 
through to the top of the canvas) and when someone wins or loses. But this would require changing the values of the 
static constants that give the number of rows and number of bricks in a row. Instead of that, we can use the fact that 
this is an application and give the application some values when it starts out.

Breakout is an application, so you can call it from the interactions pane. In fact, you can use this in the interac-
tions pane:

java Breakout 3  2

This is equivalent to writing Breakout.main(new String[]{"3","2"}; That is, it calls method main 
with the given String array as argument.

Look at method Breakout.main. Its first statement calls fixBricks. Your task is to write the body of 
fixBricks, following its specification (and the hint given as a comment) carefully. You will then be able to start 
the program as shown above and have just 3 bricks per row and 2 rows. 

Shoot for getting this done by 25–26 April.

3. Create the paddle

Now create the black paddle. You will need to reference the paddle often, so declare it as a private field of type 
GRect. A public static variable of class Breakout gives its vertical position relative to the bottom of the window. 

An important point: making the paddle move in response to mouse movements means that something has to be  
registered as a "listener" to the mouse.   We talked about how to do this in general in lecture, but the acm classes 
handle this a bit differently. Read the ACM documentation (webpage URL given above) to find out how to 
make the "appropriate something"  in the ACM package framework listen to the mouse.  Remember that the 
whole window associated with the GraphicsProgram should listen to mouse movement, not the paddle.

 Once you've done that, here’s how to make the paddle track the mouse (horizontally only). Declare a procedure 
like this:

/** Move the horizontal middle of the paddle to the x-coordinate of the
      mouse position --but keep the paddle completely on the board. */
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public void mouseMoved(MouseEvent e) {
    GPoint p= new GPoint(e.getPoint());
    ...
}

So, you are overriding inherited procedure mouseMoved. This procedure is called whenever the mouse is 
moved. Parameter e has a function getPoint, and the assignment statement we give you in the body stores in p 
the coordinates of the point where the mouse currently is. Replace the three dots by code that changes the x-
coordinate of  the paddle as indicated in the specification, using the x-coordinate of point p. Be careful that the pad-
dle stays completely on the board even if the mouse moves off the board. Our code for this is 3 lines long; it uses 
function Math.min and Math.max.

Try to get this done by 28 April.

4. Create a ball and make it bounce off the walls

You are now past the “setup” phase and into the “play” phase of the game, where a ball is created and moves and 
bounces appropriately.  A ball is just a filled GOval. To start, create a ball and put it in the center of the window. 
You probably want a private field ball of type GOval to contain the ball, since you will have to refer to it often. 
Keep in mind that the coordinates of the GOval specify the upper left corner and not the center of the ball.

The play phase of the game should contain a loop, each iteration of which (1) moves the ball a bit, (2) changes 
direction if it hits a wall, and (3) pauses for 10 milliseconds, using pause(10);. The program needs to keep track 
of the velocity of the ball, which consists of its horizontal (x) component and its vertical (y) component, which you 
declare as fields like this:

    private double vx, vy;  // give their meaning in a comment!

These velocity components represent the change in position that occurs on each time step (each loop iteration).

Initially, the ball should head downward, so use a starting velocity of +3.0 for vy. The game would be boring if 
every ball took the same course, so choose component vx randomly. You can read about random numbers in the 
text, but for now, simply do the following:

1. Declare a field rgen, which will serve as a random-number generator:

private RandomGenerator rgen= new RandomGenerator();

2. Initialize variable vx as follows:

vx= rgen.nextDouble(1.0, 3.0);
if (!rgen.nextBoolean(0.5)) vx= -vx;

This code sets vx to be a random double in the range 1.0 to 3.0 and then makes it negative half the time.

Your next challenge is to get the ball to bounce off the walls of the playing board, ignoring entirely the paddle 
and the bricks. To do this, after moving the ball one step, by (vx,vy), do the following. Suppose the ball is going 
up. Then, if any part of the ball has a y-coordinate <= 0, the ball has reached the top and its direction has to be 
changed so that it goes down, by setting vy to -vy. Check the other three sides in the same fashion. When you have 
finished this, the ball will bounce around the playing board forever —until you stop it.

You have to figure out whether the ball has reached (or gone over) the top. Remember that the location of a 
GOval is the top-left corner of its bounding box.

Complete this by 30 April.

5. Checking for collisions

Now comes the interesting part. In order to make Breakout into a real game, you have to be able to tell when 
the ball collides with another object in the window. As scientists often do, we make a simplifying assumption and 
then relax the assumption later. Suppose the ball were a single point (x,y) rather than a circle. The call

 getElementAt(x,y)

of inherited function getElementAt does this: (1) return null if no graphical object covers point (x,y) and (2) 
return the (name on the tab of) the GObject that covers point (x,y), if some GObject actually covers the point. 
(If several GObjects cover the point, the one that appears to be in front on the display is returned.)
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Suppose getElementAt returns (the name on the tab of) a GObject gob. If gob == paddle, you know 
the paddle has collided with the single-point ball at (x,y).  If gob is an instance of Brick,  then gob must be a 
brick. So, we have just explained how to test whether a single-point ball has collided with the paddle or a brick.

But the ball is not a single point. It occupies physical area, so it may collide with something on the screen even 
though its center does not. The easiest thing to do —which is typical of the simplifying assumptions made in real 
computer games— is to check a few carefully chosen points on the outside of the ball and see whether any of those 
points has collided with anything. As soon as you find something at one of those points (other than the ball of 
course) you can declare that the ball has collided with that object.

You should check the four corner points on the square in which the ball 
is inscribed. A GOval is defined in terms of its bounding rectangle, so that 
if the upper left corner of the ball is at the point (x,y), the other corners 
are at the locations shown in the diagram to the right (r is the radius of the 
ball). These points have the advantage of being outside the ball,  so that 
getElementAt can’t return the ball itself. But they are close enough to 
make it appear that a collision has occurred.

Write a function

 GObject getCollidingObject()

that checks the four corners, one at a time; if one of them collides with the paddle or a brick, stop the checking im-
mediately and return the object involved in the collision. Return null if no collision occurred. Call this function 
once, each time the ball is moved. 

Now, in the loop repetend, after moving the ball, call getCollidingObject to check for a collision. If the 
ball going up collides with the paddle, don’t do anything. If the ball going down collides with the paddle, negate the 
vertical direction of the ball. If the ball (going in either vertical direction) collides with a brick, remove the brick 
from the board and negate the vertical direction. Inherited function remove(gob) can be used to remove object 
gob. You can check whether the object is a brick by asking whether it is an instance of class Brick.
Try to get this done by 2 May.

6. Finishing up

The basic parts are now done. A few more details have to be taken care of, and these may cause you to reorgan-
ize procedure run.  Think carefully about the following tasks and how you want to design the final program before 
proceeding.

1. Take care of the case that the ball hits the bottom wall. Right now, the ball just bounces off this wall like all 
the others, but hitting the bottom means that the ball is gone. In a game, the player should get three balls before 
losing. If the player can have another ball, put a message on the board somewhere (use a GLabel object), 
telling the player that another ball is coming in 3 seconds, pause for 3 seconds, remove the message, and con-
tinue with a new ball.

2. Check for hitting the last brick, in which case the player wins.  An easy way to do this is to keep track of how 
many bricks are left on the board; when there are none, the game ends and the player has won.

3. When a game ends, place a message somewhere on the window (use a GLabel object).

4. Experiment with the settings that control the speed of your program. How long should you pause in the loop 
that updates the ball? Do you need to change the velocity values to get better play action?

5. Test your program to see that it works.  Play for a while and make sure that as many parts of it as you can 
check are working.  If you think everything is working, try this: Just before the ball is going to pass the paddle 
level, move the paddle quickly so that the paddle collides with the ball rather than vice-versa. Does everything 
still work, or does your ball seem to get “glued” to the paddle? If you get this error, try to understand why it 
occurs and how you might fix it.

7. (Completely optional) Make a jar file You might want people to be able to play your game without having to 
have DrJava installed.  Create a jar file Breakout.jar, checking that you can run it as a stand-alone application (e.g. 
by double-clicking on  its icon).  You can use the procedure outlined in the lecture notes (covered in appendix I.4 in 
the text), or use DrJava's project facilities (instructions here: http://drjava.org/index.php?page=docs/user/ch04.html).   
You don't have to turn anything in for this step; you can just send your jar file to your friends and let them amuse 
themselves for a couple of hours destroying innocent bricks that never did them any harm.
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Strategy and tactics

Here are some hints for this assignment:

1. Start as soon as possible. If you wait until the day before this assignment is due, you will have a hard time 
completing it. If you do one part of it every 2–4 days, you will enjoy it and get it done on time. The hard part 
may be “finishing up” —designing the final reorganization in order to incorporate three balls in a game.

2. Implement the program in stages, as described in this handout. Don’t try to get everything working all at once. 
Make sure that each stage is working before moving on to the next stage.

3. Set up a schedule. We have suggested some milestones,  but make up your own schedule. Leave time for learn-
ing things and asking questions. You may have to learn some points about package acm.graphics by yourself.

4. Check the assignments page on the course website for FAQs concerning this assignment.

5. Don’t try to extend the program until you get the basic functionality working (see the next section). If you add 
extensions too early, debugging may get very difficult.

Possible extensions

There are many ways —and fun ways— to extend this assignment. Add more and we will be a bit more lenient 
with grading than if you implement the bare minimum. But note that a submission that does not have a good class 
invariant and good specifications for the methods will not be looked at kindly under any circumstances.

Here are some ways to extend the game. Number 1 is one of the best.

1. Improve user control over bounces. The program gets rather boring if the only thing the player has to do is hit 
the ball. Let the player control the ball by hitting it with different parts of the paddle. For example, suppose the 
ball is coming down toward the right (or left). If it hits the left (or right) 1/4 the paddle, the ball goes back the 
way it came (both vx and vy are negated) Let the player play as many games as they want.  The player could 
click the mouse button to start a new game. A call on inherited procedure waitForClick() will wait (or 
pause) until the mouse is clicked.

2. Play a sound whenever the ball hits a brick. This is an easy extension. The course webpage contains an audio 
file bounce.au. You can load it by writing

  AudioClip bounceClip=  MediaTools.loadAudioClip("bounce.au");

and play it by calling bounceClip.play();. The sound might get obnoxious after a while, so figure out a 
way to let the user turn it off (and on).

3. Add in the kicker. The arcade version of Breakout lures you in by starting off slowly. But as soon as you 
think you were getting the hang of things,  the ball speeds up, making life more exciting.  Implement this in 
some fashion, perhaps by doubling the horizontal velocity of the ball on the seventh time it hits the paddle.

4. Keep score. Display the score (number of bricks destroyed,  say) underneath the paddle, but remember, a GLa-
bel is an object, and the ball hitting it should have no effect. Perhaps you can even make the bricks in the 
higher rows more valuable.

5. Use your imagination. What else have you always wanted a game like this to do?

Submitting your assignment

Before the due date,

(1) Put a comment at the top of class Breakout that contains the time you spent on this project, and also give a 
brief overview of any extensions you added to it.

(2) Add a comment that gives your opinion of this assignment —whether it was educational,  interesting, exciting, 
loads of fun, to easy, too long, horribly described, how we could improve it, etc.

Most students should submit file Breakout.java and file Brick.java on the CMS.

However, if you have extra files to submit,  put all your files in a zip file everything.zip and submit it in-
stead.  Do not give us .class files and other stuff,  just zip up Breakout.java, Brick.java,  and other files that 
your program needs.
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