
CS1110 Fall 2011. Interfaces

Reading for today: Sec. 12.1 and corresponding ProgramLive material.
Also, compare with previous discussions of abstract classes (Sec. 4.7).

in • ter • face |ˈintərˌfās| noun

1. a point where two systems, subjects,
organizations, etc., meet and interact :
the interface between accountancy and
the law.
•
chiefly Physics a surface forming a

common boundary between two
portions of matter or space, e.g.,
between two immiscible liquids : the
surface tension of a liquid at its air/
liquid interface.

2. Computing a device or program enabling a
user to communicate with a computer.
•
a device or program for connecting two

items of hardware or software so that
they can be operated jointly or
communicate with each other.

—The Oxford American Dictionary
A computed interface, in motion

En
rig

ht
, M

ar
sc

hn
er

, a
nd

 F
ed

ki
w

 S
IG

G
RA

PH
 2

00
2

2

Rectangle: All angles equal

Rhombus: All sides same length

Square: All angles equal and all sides same length

A square is a rectangle
A square is a rhombus

A square inherits its properties from both rectangle and rhombus

public class rectangle { … }
public class rhombus { … }

public class square extends rectangle, rhombus { … }

Can extend only one class

public class C extends C1, C2 { … }

3

public class C1 {
 public int m() {
 return 2;
 }

 public int p() {
 return …;
 }
}

public class C2 {
 public int m() {
 return 3;
 }

 public int q() {
 return …;
 }
}

if we allow multiple inheritance, which m is used?

Can extend only one class

public class C extends C1, C2 { … }

4

public abstract class C1 {
 public abstract int m();
 public abstract int p();
}

public abstract class C2 {
 public abstract int m();
 public abstract int q();
}

But this would be OK, because the
bodies of the methods are not given!

Nevertheless, not allowed

Use an “interface”

public class C implements C1, C2 { … }

5

public interface C1 {
 int m();
 int p();
}

public interface C2 {
 int m();
 int q();
}

Methods declared in an interface must be abstract!
No need for “abstract”, automatically public dogsanimals canines

class
hierarchy:
nested

categories

Reading class definitions

public class Canine extends Animal { … }
public class Dog extends Canine implements Companion, Guardian {

…
}

6

Canines are animals. Dogs are canines.
Dogs also can serve as companions

or as guardians.

companions

guardians

interfaces:
overlapping
categories

{

7

A use of interfaces:
remove need for duplicate code for special cases of a general approach

Example: sorting is general, but the notion of “<“ may change:

Recommender systems should sort products (movies, songs …) by
quality or by how much you, personally, would like them.

 Travel sites should sort flights by price, departure, etc.

Don’t want to write many sort procedures:
 public void sort(int[] arr) {…}
 public void sort(double[] arr) {…}
 public void sort(Movie[] arr) {…}
 public void sort(Flight[] arr) {…}

Use an interface to enforce the existence of a method that does the
comparison of two objects

8

Interface java.util.Comparable
/** Comparable requires method compareTo*/
public interface Comparable {
 /** = a negative integer if this object < c,
 = 0 if this object = c,
 = a positive integer if this object > c.
 Throw a ClassCastException if c cannot
 be cast to the class of this object. */
 int compareTo(Object c);
}

Classes that
implement
Comparable
Boolean
Byte
Double
Integer
…
String
BigDecimal
BigInteger
Calendar
Time
Timestamp
…

abstract method: body replaced by ;

Every class that implements Comparable must
override compareTo(Object).

9

Using an interface as a type

/** Swap b[i] and b[j] to put larger in b[j] */
public static void swap(Comparable [] b, int i, int j) {

if (b[j].compareTo(b[i]) < 0) {
Comparable temp= b[i];
b[i]= b[j];
b[j]= temp;

}
}

public class Movie implements Comparable {
String name;
/** = -1, 0, or +1 if this Movie’s name comes alphabetically before, at, or after c.

Throw a ClassCastException if c cannot be cast to Movie.*/
public int compareTo(Object c) {

// Note: String implements Comparable
return this.name.compareTo(((Movie) c).name);

}
}

Another example: Listening to a mouse click (or
other object-appropriate action)

10

Defined in package java.awt.event
public interface ActionListener extends Eventlistener {
 /** Called when action occurs. */
 public void actionPerformed(ActionEvent e);
}

/** An instance has two buttons. Exactly one is always enabled. */
 public class ButtonDemo1 extends JFrame
 implements ActionListener {
 /** Process a click of a button */
 public void actionPerformed (ActionEvent e) {
 boolean b= eastB.isEnabled();
 eastB.setEnabled(!b);
 westB.setEnabled(b);
 }
}

11

Declaring your own interfaces

/** comment*/
public interface <interface-name> {
 /** method spec for function*/
 int compareTo(…);
 /** method spec for procedure */
 void doSomething(…);
 /** explanation of constant x*/
 int x= 7;

}

Every field is implicitly public, static, and final.
You can put these modifiers on them if you wish.

Methods are implicitly public.
You can put the modifier on if
you wish.

Use “;” instead of a body

12

A class can implement several interfaces

/** comment*/
public class C implements Inter1, Inter2, Inter3{
 …
}

Example: a recommendation system that returns all movies that
satisfy some minimum similarity to one of your favorites.
 Need to sort and to measure similarity (a general task worthy
of an interface).

The class must override all methods declared in
interfaces Inter1, Inter2, and Inter3.

