
CS1110 15 November 2011
Exceptions in Java. Read chapter 10.

HUMOR FOR LEXOPHILES (LOVERS OF WORDS):

Police were called to a day care; a three-year-old was resisting a rest.
Did you hear about the guy whose whole left side was cut off?
He's all right now.
The butcher backed into the meat grinder and got a little behind in his
work.
When fish are in schools they sometimes take debate.
A thief fell and broke his leg in wet cement. He became a hardened
criminal.
Thieves who steal corn from a garden could be charged with stalking.
When the smog lifts in Los Angeles, U.C.L.A.

Exceptional circumstances

/** = the decimal number represented by s. */
int parseInt(String s) { … }
…but what if s is “bubble gum”?

/** = the decimal number represented by s, or –1 if s
 does not contain a decimal number. */
…but what if s is “–1”?

/** = the decimal number represented by s
 Precondition: s contains a decimal number. */
…but what if s might not, sometimes?
Somehow, we have to be able to deal with the unexpected case.

Dealing with exceptional circumstances

/** = the decimal number represented by s.
 Pre: s contains a number. */
int parseInt(String s) { … }
/** = “s contains a decimal number.” */
boolean parseableAsInt(String s) { … }

Now we have to write:

if (parseableAsInt(someString))
 i= parseInt(someString);
else {
 // do something about the error
}

We could roll this into one call,
but it doesn’t really change things:
/** = “s contains a decimal number.”
 If yes, update the value of result */
boolean parseInt(String s, Integer result) { … }

How to read a number from a file, in
fourteen easy steps:

1. Open the file
2. If the file doesn’t exist, …
3. If there was a disk error, …
4. Read a line from the file.
5. If the file was empty, …
6. If there was a disk error, …
7. Convert the string to a number.
8. If the string is not a number, …
9. If we have run out of memory, …
10. Close the file.
11. If there was a disk error,!…
12. If t
13. If t
14. If t

Common outcome: weary
programmers write code
that ignores errors.

There has to be a better way!

Exception Handling

/** Parse s as a signed decimal integer and return
 the integer. If s does not contain a signed decimal
 integer, throw a NumberFormatException. */
public static int parseInt(String s) …
parseInt, when it finds an error, does not know what caused the error and hence cannot
do anything intelligent about it. So it “throws the exception” to the calling method.
The normal execution sequence stops!

With this definition we can write, e.g.:
try {
 i= Integer.parseInt(someString);
 System.out.println(“The number is: ” + i);
} catch (NumberFormatException nfe) {
 System.out.println(“Hey! That is not a number!”)
}
but we can also just write:
i= Integer.parseInt(someString);
thereby letting our caller handle the exception instead.

this might throw a NumberFormatException

this tells Java we want to handle N.F.E.s here

this executes if the exception happens

Exceptions in Java

Exceptions are represented by instances of class Throwable.
Making exceptions instances of classes lets them be organized in a hierarchy.

Throwable

RuntimeException

ArithmeticException

Throwable

a0

“/ by zero”

Throwable() Throwable(String)
getMessage()

Exception
Exception() Exception(…)

RuntimeException

ArithmeticException

RunTimeE…() RunTimeE…(…)

ArithmeticE…() ArithmeticE…(…)

Exception Error

problems you
might want
to deal with

problems you
probably can’t
fix anyway

02 /** Illustrate exception handling */
03 public class Ex {
04 public static void first() {
05 second();
06 }
07
08 public static void second() {
09 third();
10 }
11
12 public static void third() {
13 int x= 5 / 0;
14 }
15 }

ArithmeticException: / by zero
 at Ex.third(Ex.java:13)
 at Ex.second(Ex.java:9)
 at Ex.first(Ex.java:5)

Ex.first();

AE

a0

“/ by zero”

Class

Call:

Output:

02 /** Illustrate exception handling */
03 public class Ex {
04 public static void first() {
05 second();
06 }
07
08 public static void second() {
09 third();
10 }
11
12 public static void third() {
13 throw new ArithmeticException (“I threw it”);
14 }
15 }

ArithmeticException: I threw it
 at Ex.third(Ex.java:13)
 at Ex.second(Ex.java:9)
 at Ex.first(Ex.java:5)

Ex.first();

AE

a0

“I threw it”

Class

Call:

Output:

/** An instance is an exception */
public class OurException extends Exception {

 /** Constructor: an instance with message m*/
 public OurException(String m) {
 super(m);
 }

 /** Constructor: an instance with no message */
 public OurException() {
 super();
 }
}

02 /** Illustrate exception handling */
03 public class Ex {
04 public static void first() throws OurException {
05 second();
06 }
07
08 public static void second() throws OurException{
09 third();
10 }
11
12 public static void third() throws OurException{
13 throw new OurException (“Whoa!”);
14 }
15 }

OurException: Whoa!
 at Ex.third(Ex.java:13)
 at Ex.second(Ex.java:9)
 at Ex.first(Ex.java:5)

Ex.first();

Class

Call:

Output:

throws clauses are required because
OurException, unlike ArithmeticException,

is a “checked exception.”

Won’t
compile

yet!

02 /** Illustrate exception handling */
03 public class Ex {
04 public static void first() {
05 second();
06 }
07
08 public static void second() {
09 third();
10 }
11
12 public static void third() {
13 throw new OurException (“Whoa!”);
14 }
15 }

“This method sometimes throws OurException”

Exception Hierarchy

Throwable

RuntimeException

NullPointerE.

Exception
Error

problems you
might want
to deal with

problems you
probably can’t
deal with anyway

IOError AssertionError …

ArithmeticE. ClassCastE.
IndexOutOfBoundsE.

FileNotFoundE.

EndOfFileE.

UnsupportedAudioFileE.

problems you can prevent
by coding properly

unchecked
exceptions

checked
exceptions

… (all others) …

…

Catching a thrown exception public class Ex1 {
 public static void first() {
 try {
 second();
 }
 catch (MyException ae) {
 System.out.println
 (“Caught MyException: ” + ae);
 }
 System.out.println
 (“Procedure first is done.”);
 }
 public static void second() throws MyException {
 third();
 }
 public static void third() throws MyException {
 throw new MyException(“yours”);
 }
}

Execute the try-block. If it
finishes without throwing
anything, fine.

If it throws a MyException
object, catch it (execute the
catch block); else throw it
out further.

/** Input line supposed to contain one int, maybe whitespace on either
 side. Read line, return the int. If line doesn’t contain int, keep asking
 until it does. */
public static int readLineInt() {
 String input= readString().trim();
 // inv: input contains last input line read; previous
 // lines did not contain a recognizable integer.
 while (true) {
 try {
 return Integer.valueOf(input).intValue();
 } catch (NumberFormatException e) {
 System.out.println(“Input not int. Must be an int like”);
 System.out.println(“43 or –20. Try again: enter an int:”);
 input= readString().trim();
 }
 }
 }

