
CS1110 25 Oct 2011: Arrays.

Reading: Secs. 8.1, 8.2, 8.3

Listen to the following lectures on loops on your PLive CD. They are only 2-3
minutes long, and each has an insightful message.
1. The 3 lectures on Lesson page 7-6 —read the whole page.
2. The 4 lectures in Lesson page 7-5.

Computational simplicity
Most of us don’t write perfect essays in one pass, and coding is the same: writing
requires revising; programming requires revising.
If you are writing too much code —it gets longer and longer, with no end in sight:
stop and look for a better way.
If your code is getting convoluted and you have trouble understanding it: stop and
look for a better way.
Learn to keep things simple, to solve problems in simple ways. This sometimes
requires a different way of thinking.
We are trying to teach not just Java but how to think about problem solving.
A key point is to break a problem up into several pieces and do each piece in
isolation, without thinking about the rest of them. Our methodology for developing
a loop does just that.

A bug in the Zune

/* day contains the number of days since 1 Jan 1980 */
/* Set year and day to current year and day of year */

year = ORIGINYEAR; /* = 1980 */

while (day > 365) {
if (IsLeapYear(year)) {

if (day > 366) {
day= day – 366;
year= year + 1;

}
} else {

day= day – 365;
year= year + 1;

}
}

http://tinyurl.com/9b4hmy

Does each iteration
make progress

toward termination?
Not if day = 366!!

Understanding the pieces of a loop • When developing the loop,
how do we write the three
pieces?

• When understanding a loop
that someone gives us, how
do we know the pieces are
right?

want this to be
true at the end

this will be true
before and after

each iteration
// inv: <invariant>
while () {

}
// R: <result assertion>

initialization

condition

repetend

4 Loopy Questions

1. Does the initialization
make inv true?

2. Is R always true when
inv is true and condition
is false?

3. Does the repetend make
progress?

4. Does the repetend keep
inv true?

Arrays

Array: an object that holds a fixed number of
values of the same type.

(that array! contains 4 values of type int)
The type of an array is written:

! <type>[] —for instance, int[]
...so to declare a variable x that holds the
name of an array of ints:

! <type> <name> ; —e.g., int[] x;
Elements of the n-element array x are
numbered:

! 0, 1, 2, …, n – 1

To refer to an element of an array:

! <var>[<index>] —for instance, x[3]

a0
5

7

4

–2

a0x
int[]

x[0]
x[1]
x[2]
x[3]

Arrays

The length of an array is a field of the array
object.

! x.length —not x.length()
The length field is final: it never changes after
the array is created. (We will omit in in pictures
from here on.)

The length is not part of the array type. A
variable of type int[] can be assigned arrays of
different lengths at different times.

Declaring x does not create an array. An array
type is an object type, so x can be null.
To create a new array, there is a special new-
expression:

! new <type>[<length>] —e.g. x= new int[3];

a0

5

7

4

–2

x[0]
x[1]
x[2]
x[3]

length 4

a0x
int[]

a1
5

7

4

0

1

2

int[] x;

int k= 3;
x[k]= 2 * x[0];
x[k–1]= 6;

x= new int[4];

x[2]= 5;
x[0]= –4;

? a0x
int[]

Create array object of length 4,
store its name in x

(Elements initialized to 0)

Create a variable named x that
holds a value of type int[]

(It is uninitialized)

Assign 5 to array element 2
and –4 to element 0

Assign –8 to x[3]
and 6 to x[2]

a0
0

0

0

0

0

1

2

3

3k
int

6/
–4/

5/
–8/

/

Arrays vs. Vectors vs. Strings

Declaration:

Creation:

Reference:

Change:

int[] a;

a= new int[n];

a[i]= x;

x= a[i];

Vector<Integer> v;

v= new Vector<Integer>();

v.set(i, x);

x= v.get(i);

String s;

s= “foo”;

c= a.charAt(i);

Variables a[0], a[1], … are
at successive locations in

memory. Element type can
be class type or primitive

type.

Storage layout not
specified (but really, it is
an array). Element type
can only be a class type.

Storage layout not
specified (but really,

it is an array).
Element type is

always char.

contains ints contains Integers

size fixed forever can be resized at will contents fixed forever

contains chars

When used in declaration, short form is available:

int[] c;
c= new int[] { 5, 4, 7, 6, 5 };
int[] c= new int[] { 5, 4, 7, 6, 5 };
int[] c= { 5, 4, 7, 6, 5 };

Array initializers

To initialize the elements of a newly created array:

int[] c= new int[5];
c[0]= 5; c[1]= 4; c[2]= 7; c[3]= 6; c[4]= 5;

Instead, use an array initializer:

new int[] { 5, 4, 7, 6, 5 }

a0c
int[]

a0
5

4

7

6

5

0

1

2

3

4

create array of 5 ints initialized with default (0)
assign new values to elements

create array of 5 ints and initialize all elements

all three do the same thing

no size goes here (implied
by length of initializer list)

types must agree
with array’s type

Array initialization example

public class D {
public static final String[] months= new String[]{"January", "February",

 "March", "April", "May", "June", "July", "August",

 "September", "October", "November", "December"};
/**
= the month name, given its number m

 Precondition: 1 <= m <= 12 */
public static String theMonth(int m) {

return months[m–1];
}

}

Variable months is:

static: object assigned to it will be created only once.
public: can be seen outside class D.
final: it cannot be changed.

e.g. D.theMonth(4) returns
months[3], which is "April".

Array algorithm: linear search

/**	= index of first occurrence of c in b[h..]
	 Precondition: c is in b[h..] */
public static int findFirst(int c, int[] b, int h) {

// Store in i the index of the first c in b[h..]
int i= h;
// inv: c is not in b[h..i–1]
while (b[i] != c) {

i= i + 1;
}
// R: b[i] == c and c is not in b[h..i-1]

return i;
}

4 Loopy Questions

1. Does the initialization
make inv true?

2. Is R always true when
inv is true and condition
is false?

3. Does the repetend make
progress?

4. Does the repetend keep
inv true?

b c is not here c
h i n

result (R)
b c is not here

h i n

invariant (inv)
c is in here

b[i] == c

inv
10

p[0] p[1] p[i]

… …
p[n–1]

r is not here pEnd

Array algorithm: loaded dice
/**	 = a random int in 0..p.length-1; i is returned with probability p[i].
	 Precondition: the entries of p are positive and sum to at least 1. */
public static int roll(double[] p) {

double r= Math.random(); // r in [0,1)

// Think of the interval [0,1] as divided into segments of size p[i].
// Store into i the segment number in which r falls.
int i= 0; double pEnd= p[0];

// inv: r >= sum of p[0] .. p[i–1]; pEnd = sum of p[0] .. p[i]
while (r >= pEnd) {

pEnd= pEnd + p[i+1];
i= i + 1;

}
// R: sum of p[0] .. p[i–1] <= r < sum of p[0] .. p[i]

return i;
}

4 Loopy Questions

1. Does the initialization
make inv true?

2. Is R always true when
inv is true and
condition is false?

3. Does the repetend
make progress?

4. Does the repetend
keep inv true?

r < pEnd

Rr
10

p[0] p[1] p[i]

… …
p[n–1]

Procedure swap

public class D {
 /** = Swap b[h] and b[k] */
 public static void swap (int[] b, int h, int k) {
 int temp= b[h];
 b[h]= b[k];
 b[k]= temp;
 }
}

…

swap(c, 3, 4);

Does swap c[h] and
c[k], because

parameter b contains
name of the array.

a0c
int[]

a0
5

4

7

6

5

0

1

2

3

4

swap: 1 D

a0b

?temp

3h 4k

