
1	

1	

CS1110 18 October 2011 ���
	
Read: Sec. 2.3.8 and chapter 7 on loops. ���

The lectures on the ProgramLive CD can be a big help.	

Some anagrams	

A decimal point 	
I'm a dot in place 	
 	
Animosity Is no amity	

Debit card 	
Bad credit 	
 	
 	
 	
Desperation A rope ends it	

Dormitory 	
Dirty room 	
 	
 	
 	
Funeral Real fun	

Schoolmaster	
 The classroom 	
 	
 	
Slot machines Cash lost in 'em	

Statue of liberty 	
Built to stay free 	
 	
Snooze alarms Alas! No more Z's	

The Morse code 	
Here come dots 	
 	
Vacation times I’m not as active	

Western Union 	
No wire unsent 	
 	
George Bush 	
He bugs Gore	

Parishioners 	
I hire parsons	
 	
 	
 	
The earthquakes That queen shake	

	

Circumstantial evidence 	
Can ruin a selected victim	

Victoria, England’s queen 	
Governs a nice quiet land	

Eleven plus two 	
Twelve plus one (and they have 13 letters!)	

2	

mean: 94.7	

median: 98	

std dev: 6.3	

mean: 96.4	

median: 99���
std dev: 5.9	

Time spent: mean: 6.4 median: 6	

(84 people)	

assertion: true-false statement, sometimes placed in a program
	
 to assert that it is true at that point.	

precondition: assertion placed before a statement	

postcondition: assertion placed after a statement	

loop invariant: assertion supposed to be true before and after 	

 each iteration of the loop	

iteration of a loop: one execution of its repetend	

We describe a methodology for developing for-loops.	

A4	

last	

sem	

	

this 	

sem	

125 ���
graded	

2-2.5: 4	

3-3.5: 8	

4-4.5: 10	

5-5.5: 18	

6-6.5: 09	

7-7.5: 08	

08: 13	

09: 10	

10: 5	

12: 1	

16: 1	

20: 1	

3	

���
	

Assertion: true-false statement (comment) asserting a belief
about (the current state of) your program.	

 // x is the sum of 1..n <- asserts a specific relationship 	
 	

	
 	
 between x and n	

	

	

	

	

	

Assertions help prevent bugs by helping you keep track of what
you’re doing …	

… and they help track down bugs by making it easier to check
belief/code mismatches	

x	
 ?	
 n	
 3	

x	
 ?	
 n	
 0	
x	
 ?	
 n	
 1	

assert <boolean expression> ;	

Java assert statement. To
execute: if the bool exp is
false, stop with an error
message	
 4	

 Precondition: assertion placed before a segment ���
Postcondition: assertion placed after a segment ���

	

// x = sum of 1..n-1	

x= x + n;	

n= n + 1;	

// x = sum of 1..n-1	

precondition	

postcondition	

1 2 3 4 5 6 7 8 	

x contains the sum of these (6)	

n

n
1 2 3 4 5 6 7 8 	

x contains the sum of these (10)	
Meaning: if precondition is true,
then after executing the segment
the postcondition will be true	

5	

Solving a problem ���
	

// x = sum of 1..n	

	

	

n= n + 1;	

// x = sum of 1..n	

precondition	

postcondition	

What statement do you put here
so that segment is correct? (if
precondition is true, execution
of segment should make
postcondition true.)	

A. x= x + 1;	

B. x= x + n;	

C. x= x + n+1;	

D. None of A, B, C	

E. I can’t figure it out	
 6	

Solving a problem ���
	

// x = sum of 1..n-1	

	

	

n= n + 1;	

// x = sum of 1..n-1	

precondition	

postcondition	

What statement do you put here
so that segment is correct? (if
precondition is true, execution
of segment should make
postcondition true.)	

A. x= x + 1;	

B. x= x + n;	

C. x= x + n+1;	

D. None of A, B, C	

E. I can’t figure it out	

2	

7	

Invariants: another type of assertion	

for (int i= 2; i <= 5; i= i +1) {	

 x= x + i*i;	

}	

// {R: x = sum of squares of 2..5 }	

i= 2;	

i <= 5	

i= i +1;	

true	

false	

x= x + i*i;	

// invariant	

An invariant is an assertion about the variables that is true before and
after each iteration (execution of the repetend).	

Invariant:	

x = sum of squares of 2..i-1	

x= 0;	

The loop processes the range 2..5	

in terms of the range of integers
that have been processed so far	

8	

for (int k= a; k <= b; k= k + 1) {	

	
Process integer k;	

}	

// post: the integers in a..b have been processed	

// Process integers in a..b	
 Command to do something 	

equivalent post-condition	

// inv: the integers in a..k-1 have been processed	

9	

Methodology for developing a for-loop	

1.  Recognize that a range of integers b..c has to be processed	

2.  Write the command and equivalent postcondition. 	

	

	

 // Process b..c	

	

	

	

	

	

	

	

 // Postcondition: range b..c has been processed	

3. Write the basic part of the for-loop.	

for (int k= b; k <= c; k= k+1) {	

 // Process k	

}	

4. Write loop invariant.	

// Invariant: range b..k-1 has been processed 	

5.  Figure out any initialization.	

Initialize variables (if necessary) to make invariant true.	

6. Implement the repetend (Process k).	

10	

Finding an invariant	

// Store in b the value of: 	

 “no int in 2..n-1 divides n	

	

	

	

	

	

	

	

// b = “no int in 2..n-1 divides n”	

	

	

// invariant: b = no int in 2..k-1 divides n	

	

	

	

	

	

	

Command to do
something and 	

	

	

equivalent
postcondition	

What is the invariant?	
 1 2 3 … k-1 k k+1 … n	

for (int k= 2; k < n; k= k +1) {	

	
Process k;	

	

}	

b= true;	

// 	

if (n%k == 0) b= false;	

11	

Finding an invariant	

 	

for (int k= 0; k < s.length(); k= k +1) {	

	
Process k;	

}	

// x = no. of adjacent equal pairs in s[0..s.length()-1]	

What is the invariant?	

A.  x = no. adj. equal pairs in s[1..k]	

B.  x = no. adj. equal pairs in s[0..k]	

C.  x = no. adj. equal pairs in s[1..k–1]	

D.  x = no. adj. equal pairs in s[0..k–1]	

// invariant:	

for s = ‘ebeee’, x = 2.	

k: next integer to process.���
Which ones have been���
processed?	

A.  0..k C. a..k	

B.  0..k–1 D. a..k–1	

// set x to no. of adjacent equal pairs in s[0..s.length()-1]	
 Command
to do

something
and

equivalent
post-

condition	

12	

Being careful	

// { String s has at least 1 char }	

// Set c to largest char in String s 	

	

	

// inv: 	

	

for (int k= ; k < s.length(); k= k + 1) {	

	
// Process k;	

	
	

	

}	

// c = largest char in s[0..s.length()–1] 	

c is largest char in s[0..k–1]	

1. What is the invariant?	

2. How do we initialize c
and k?	

A.  k= 0; c= s.charAt[0];	

B.  k= 1; c= s.charAt[0];	

C.  k= 1; c= s.charAt[1];	

D.  k= 0; c= s.charAt[1];	

E.  None of the above	

An empty set of characters or integers has no maximum. Therefore,	

be sure that 0..k–1 is not empty. Therefore, start with k = 1.	

Command	

	

 postcondition	

