
Recursion: If you get the point, stop; otherwise, see Recursion.
Infinite recursion: See Infinite recursion.

Read: pp. 403-408
but SKIP sect. 15.1.2
ProgramLive CD, page 15-3, has
interesting recursive methods.
Download presented algorithms from
the website

Recursive definition: A definition that is defined in terms of itself.

Recursive method: a method that calls itself (directly or indirectly).

Recursion is often a good alternative to iteration (loops), which we
cover later. Recursion is an important programming tool. Some
languages (“functional languages”) have no loops —only recursion.

Gries, Marschner
in Hollister 202

between lectures

CS1110 29 September. Recursion
Prelim I

7:30–9:00PM
Thursday, 6 Oct

1

Two simple examples

Imagine String.length() did not exist.

/** = the number of characters in s. */
public static int len(String s) {
! if (s.isEmpty())
! ! return 0;
! // { s has at least one character }
! return 1 + len(s.substring(1));
}

/** = the number of ‘e’s in s. */
public static int numEs(String s) {
! if (s.isEmpty())
! ! return 0;
! // { s has at least one character }
! return (s.charAt(0) == ‘e’ ? 1 : 0) + noe(s.substring(1));
}

2

How to use the specification of a function

/** = the length of (number of chars in) s */
public static int len(String s) {
 …
}

What is the value of this call: len(“abc”) ?

parameter argument

the length of (number of chars in) s

“abc”

To determine the value of a call:
Make a copy of the specification
and replace the parameters by the
arguments.

The
specification

is
important!!

3

Two issues in
coming to grips with recursion

1. How are recursive calls executed?

2. How do we understand a recursive method and how do we
create one?

We discussed the first issue earlier. If you execute a call on a
recursive method carefully, using our model of execution, you will
see that it works. Briefly, a new frame is created for each recursive
call. We do this in the next lecture.

DON’T try to understand a recursive method by executing its
recursive calls! Use execution only to understand how it works.

4

How to think about recursive methods

1. Have a precise method specification.

2. Base case(s): when the parameter values are as small as
possible and the answer is determined with little calculation.

3. Recursive case(s): recursive calls are used. When verifying
that the recursive cases are programmed properly, understand
recursive calls in terms of the method specification.

4. Termination: The arguments of the recursive calls have
somehow to be “smaller” than the parameters so that each
recursive call gets closer to a based case.

5

/** = the number of ‘e’s in s */
public String noe(String s) {
 if (s.length() == 0) {
 return 0;
 }
 // { s has at least one char }

}

! ! !

Called the base case

Called the recursive case

Express the answer with the same
terminology as the specification,
but on a smaller scale:
number of ‘e’s in s = (if s[0] = ‘e’ then 1 else 0) +
 number of ‘e’s in s[1..]

return (s[0] = ‘e’ ? 1 : 0) + noe(s.substring(1));

Notation:
s[i] shorthand for

s.charAt[i].

s[i..] shorthand for
s.substring(i).

s
0 1 s.length()

6

Step 1: HAVE A PRECISE SPECIFICATION

// = number of ‘e’s in s
public static int noe(String s) {
 if (s.length() == 0) {! ! !
! return 0;! ! base case
 }
 // {s has at least one character} recursive case (has a recursive call)
 // return (s[0] = ‘e’ ? 1 : 0) + number of ‘e’s in s[1..];!
 return (s[0] = ‘e’ ? 1 : 0) + noe(s.substring(1));
}! ! ! !

Step 2: Check the base case.
When s is the empty string, 0 is returned.
So the base case is handled correctly.

Understanding a recursive method

Notation:
s[i] shorthand for

s.charAt[i].

s[i..] shorthand for
s.substring(i).

7

s = “”! base case
s has at least one character! recursive case

Step 3: Recursive calls make progress toward termination.

// = number of ‘e’s in s
public static int noe(String s) {
 if (s.length() == 0) {! ! !
! return 0; base case
 }
 // {s has at least one character} recursive case (has a recursive call)
 return (s[0] = ‘e’ ? 1 : 0) + noe(s.substring(1));
}! ! ! !

argument s[1..] is smaller than
parameter s, so there is progress

toward reaching base case 0

parameter s
argument s[1..]Step 4: Recursive case is correct.

Understanding a recursive function

8

Creating a recursive method

Task: Write a method that removes blanks from a String.

0. Specification:

/** = s but with its blanks removed */
public static String deblank(String s)

1. Base case: the smallest String s is “”.

 if (s.length() == 0)
! return s;

2. Other cases: String s has at least 1 character.
 return (s[0] == ‘ ’ ? “” : “”) + s[1..] with its blanks removed

precise spec!

Notation:
s[i] shorthand for

s.charAt[i].

s[i..] shorthand for
s.substring(i).

9

// = s but with its blanks removed
public static String deblank(String s) {
 if (s.length() == 0) return s;
 // {s is not empty}
 if (s[0] is a blank)
! return s[1..] with its blanks removed
 // {s is not empty and s[0] is not a blank}
 return s[0] + (s[1..] with its blanks removed);
}

The tasks given by the two English, blue
expressions are similar to the task fulfilled by this
function, but on a smaller String! Rewrite each as

 deblank(s[1..]) .

Creating a recursive method

Notation:
s[i] shorthand for

s.charAt[i].

s[i..] shorthand for
s.substring(i).

10

// = s but with its blanks removed
public static String deblank(String s) {
 if (s.length == 0)
! return s;
 // {s is not empty}
 if (s.charAt(0) is a blank)
! return deblank(s.substring(1));
 // {s is not empty and s[0] is not a blank}
 return s.charAt(0) +
 ! deblank(s.substring(1));
}

Check the four points:
0. Precise specification?
1. Base case: correct?
2. Recursive case: progress toward termination?
3. Recursive case: correct?

11

Checking palindrome-hood

A String with at least two characters is a palindrome if:
• its first and last characters are equal, and
• the rest of the characters form a palindrome:

 e.g. AMANAPLANACANALPANAMA

/** = “s is a palindrome” */
public static boolean isPal(String s) {
! if (s.length() <= 1)
! ! return true; base case
! // { s has at least two characters }
! return s.charAt(0) == s.charAt(s.length()–1) && recursive case
! ! isPal(s.substring(1, s.length()–1));
}

has to be a palindrome

have to be the same

12

0. Precise specification?
1. Base case: correct?
2. Recursive case: progress

toward termination?
3. Recursive case: correct?

