
Recursion: If you get the point, stop; otherwise, see Recursion.
Infinite recursion: See Infinite recursion.

Read: pp. 403-408
but SKIP sect. 15.1.2
ProgramLive CD, page 15-3, has 
interesting recursive methods.
Download presented algorithms from 
the website

Recursive definition: A definition that is defined in terms of itself.

Recursive method: a method that calls itself (directly or indirectly).

Recursion is often a good alternative to iteration (loops), which we 
cover later. Recursion is an important programming tool. Some 
languages (“functional languages”) have no loops —only recursion.
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Two simple examples

Imagine String.length() did not exist.

/** = the number of characters in s. */
public static int len(String s) {
! if (s.isEmpty())
! ! return 0;
! // { s has at least one character }
! return 1 + len(s.substring(1));
}

/** = the number of ‘e’s in s. */
public static int numEs(String s) {
! if (s.isEmpty())
! ! return 0;
! // { s has at least one character }
! return (s.charAt(0) == ‘e’ ? 1 : 0) + noe(s.substring(1));
}
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How to use the specification of a function

/** = the length of (number of chars in) s */
public static int len(String s) {
    …
}

What is the value of this call:   len(   “abc”   )  ?

parameter argument

the length of (number of chars in) s

“abc”

To determine the value of a call: 
Make a copy of the specification
and replace the parameters by the
arguments.

The 
specification 

is 
important!!
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Two issues in
coming to grips with recursion

1. How are recursive calls executed?

2. How do we understand a recursive method and how do we 
create one?

We discussed the first issue earlier. If you execute a call on a 
recursive method carefully, using our model of execution, you will 
see that it works. Briefly, a new frame is created for each recursive 
call. We do this in the next lecture.

DON’T try to understand a recursive method by executing its 
recursive calls! Use execution only to understand how it works.
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How to think about recursive methods

1. Have a precise method specification.

2. Base case(s): when the parameter values are as small as 
possible and the answer is determined with little calculation.

3. Recursive case(s): recursive calls are used. When verifying 
that the recursive cases are programmed properly, understand 
recursive calls in terms of the method specification. 

4. Termination: The arguments of the recursive calls have 
somehow to be “smaller” than the parameters so that each 
recursive call gets closer to a based case.
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/** = the number of ‘e’s in s */
public String noe(String s) {
     if (s.length() == 0) {
          return 0;
     }
     // { s has at least one char }

}

! ! !

Called the base case

Called the recursive case

Express the answer with the same
terminology as the specification,
but on a smaller scale:
number of ‘e’s in s = (if s[0] = ‘e’ then 1 else 0) +
                                   number of ‘e’s in s[1..]

return (s[0] = ‘e’ ? 1 : 0)  +  noe(s.substring(1)); 

Notation:
s[i] shorthand for 

s.charAt[i].

s[i..] shorthand for 
s.substring(i).

s
0  1                                            s.length()
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Step 1: HAVE A PRECISE SPECIFICATION

// = number of ‘e’s in s
public static int noe(String  s) {
    if (s.length() == 0) {! ! !
! return 0;! !  base case
    }
    // {s has at least one character} recursive case (has a recursive call)
    // return (s[0] = ‘e’ ? 1 : 0) + number of ‘e’s in s[1..];!
    return (s[0] = ‘e’ ? 1 : 0) + noe(s.substring(1));                     
}! ! ! !

Step 2: Check the base case.
When s is the empty string, 0 is returned.
So the base case is handled correctly.

Understanding a recursive method

Notation:
s[i] shorthand for 

s.charAt[i].

s[i..] shorthand for 
s.substring(i).
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s = “”! base case
s has at least one character! recursive case

Step 3: Recursive calls make progress toward termination.

// = number of ‘e’s in s
public static int noe(String  s) {
    if (s.length() == 0) {! ! !
! return 0;       base case
    }
    // {s has at least one character}   recursive case (has a recursive call)
   return (s[0] = ‘e’ ? 1 : 0) + noe(s.substring(1));                     
}! ! ! !

argument s[1..] is smaller than
parameter s, so there is progress

toward reaching base case 0

parameter s
argument s[1..]Step 4: Recursive case is correct.

Understanding a recursive function
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Creating a recursive method

Task: Write a method that removes blanks from a String.

0. Specification:

/** = s but with its blanks removed */
public static String deblank(String s)

1. Base case: the smallest String s is “”.

     if (s.length() == 0)
! return s;

2. Other cases: String s has at least 1 character.
    return (s[0] == ‘ ’ ? “” : “”) + s[1..] with its blanks removed

precise spec!

Notation:
s[i] shorthand for 

s.charAt[i].

s[i..] shorthand for 
s.substring(i).
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// = s but with its blanks removed
public static String deblank(String s) {
    if (s.length() == 0)  return s;
    // {s is not empty}
    if  (s[0] is a blank)
! return s[1..] with its blanks removed
    // {s is not empty and s[0] is not a blank}
    return s[0] + (s[1..] with its blanks removed);
}

The tasks given by the two English, blue 
expressions are similar to the task fulfilled by this 
function, but on a smaller String!  Rewrite each as

    deblank(s[1..]) .

Creating a recursive method

Notation:
s[i] shorthand for 

s.charAt[i].

s[i..] shorthand for 
s.substring(i).
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// = s but with its blanks removed
public static String deblank(String s) {
    if (s.length == 0)
! return s;
    // {s is not empty}
    if  (s.charAt(0) is a blank)
! return deblank(s.substring(1));
    // {s is not empty and s[0] is not a blank}
    return s.charAt(0) + 
 !     deblank(s.substring(1));
}

Check the four points:
0. Precise specification?
1. Base case: correct?
2. Recursive case: progress toward termination?
3. Recursive case: correct?
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Checking palindrome-hood

A String with at least two characters is a palindrome if:
• its first and last characters are equal, and
• the rest of the characters form a palindrome:

        e.g.   AMANAPLANACANALPANAMA

/** = “s is a palindrome” */
public static boolean isPal(String s) {
! if (s.length() <= 1)
! ! return true;      base case
! // { s has at least two characters }
! return s.charAt(0) == s.charAt(s.length()–1) &&      recursive case
! ! isPal(s.substring(1, s.length()–1));
}

has to be a palindrome

have to be the same
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0. Precise specification?
1. Base case: correct?
2. Recursive case: progress 

toward termination?
3. Recursive case: correct?


