CS1110 29 September. Recursion

Read: pp. 403-408
but SKIP sect. 15.1.2

ProgramLive CD, page 15-3, has

interesting recursive methods. Gries, Marschner

in Hollister 202

Download presented algorithms from Yt —

the website

Recursive definition: A definition that is defined in terms of itself.
Recursive method: a method that calls itself (directly or indirectly).

Recursion is often a good alternative to iteration (loops), which we
cover later. Recursion is an important programming tool. Some
languages (“functional languages”) have no loops —only recursion.

Recursion: If you get the point, stop; otherwise, see Recursion.
Infinite recursion: See Infinite recursion.

Two simple examples

Imagine String.length() did not exist.

/** = the number of characters in s. */
public static int len(String s) {
if (s.isEmpty())
return 0;
/I { s has at least one character }
return 1 + len(s.substring(1));

}

/** = the number of ‘e’s in s. */
public static int numEs(String s) {
if (s.isEmpty())
return 0;
/I { s has at least one character }
return (s.charAt(0) == ‘e’ ? 1 : 0) + noe(s.substring(1));

How to use the specification of a function

/*#* = the length of (number of chars in) s */
public static int len(String s) {

¥ parameter argument

What is the value of this call: len(“abc”) ?

To determine the value of a call: ifi The
Make a copy of the specification spect cathn
and replace the parameters by the . 1S

important!!

arguments.

Two issues in
coming to grips with recursion

1. How are recursive calls executed?

2. How do we understand a recursive method and how do we
create one?

We discussed the first issue earlier. If you execute a call on a
recursive method carefully, using our model of execution, you will
see that it works. Briefly, a new frame is created for each recursive
call. We do this in the next lecture.

DON'’T try to understand a recursive method by executing its
recursive calls! Use execution only to understand how it works.

How to think about recursive methods
1. Have a precise method specification.

2. Base case(s): when the parameter values are as small as
possible and the answer is determined with little calculation.

3. Recursive case(s): recursive calls are used. When verifying
that the recursive cases are programmed properly, understand

/** = the number of ‘e’s in s */
public String noe(String s) {
if (s.length() ==0) {
return O;
¥
// { s has at least one char } Called the recursive case
return (s[0] = ‘¢’ ? 1 :0) + noe(s.substring(1));

Called the base case

recursive calls in terms of the method specification.

4. Termination: The arguments of the recursive calls have

}
01 s.length()
s‘ ‘ ‘ Notation:
s[i] shorthand for
s.charAt[i].

somehow to be “smaller” than the parameters so that each
recursive call gets closer to a based case.

Express the answer with the same

terminology as the specification,

but on a smaller scale:

number of ‘e’s in s = (if s[0] = ‘e’ then 1 else 0) +
number of ‘e’s in s[1..]

s[i..] shorthand for
s.substring(i).

Understanding a recursive method

Step 1: HAVE A PRECISE SPECIFICATION
// = number of ‘e’sin s <—J
public static int noe(String s) {

if (s.length() == 0) {

return 0; base case

}
// {s has at least one character} recursive case (has a recursive call)
// return (s[0] = ‘e’ ? 1 : 0) + number of ‘e’s in s[1..];

return (s[0] = ‘e’ ? 1 : 0) + noe(s.substring(1)); Notation:

s[i] shorthand for

s.charAt[i].
Step 2: Check the base case.

When s is the empty string, O is returned.
So the base case is handled correctly.

s[i..] shorthand for
s.substring(i).
7

Understanding a recursive function

§=" base case
s has at least one character recursive case

Step 3: Recursive calls make progress toward termination.
argument s[1..] is smaller than

parameter s, so there is progress

/f = number of ‘e’s in s toward reaching base case 0

public static int noe(String s) {
if (s.length() == 0) {
return O; base case

}

/I {s has at least one character} recursive Case (has a recursive call)
return (s[0] = ‘e’ ? 1 : 0) + noe(s.substring(1));

}

parameter s

Step 4: Recursive case is correct. argument s{1.]

Creating a recursive method
Task: Write a method that removes blanks from a String.

0. Specification:

/** = s but with its blanks removed */

public static String deblank(String s)

Notation:
s[i] shorthand for
s.charAt[i].

“»

1. Base case: the smallest String s is

if (s.length() == 0)
return s; s[i..] shorthand for
s.substring(i).

2. Other cases: String s has at least 1 character.

return (s[0] == ‘"7 :*”) + s[1..] with its blanks removed

Creating a recursive method
// = s but with its blanks removed

public static String deblank(String s) {
if (s.length() == 0) returns;
/I {s is not empty}
if (s[0] is a blank)
return s[1..] with its blanks removed
/1 {s is not empty and s[0] is not a blank}
return s[0] + (s[1..] with its blanks removed);

}

The tasks given by the two English, blue Notation:
expressions are similar to the task fulfilled by this s[i] shorthand for
function, but on a smaller String! Rewrite each as s.charAt[i].

s[i..] shorthand for

deblank(s[1..1) . s.substring(i)

10

/I = s but with its blanks removed
public static String deblank(String s) {
if (s.length == 0)
return s;
/I {s is not empty}
if (s.charAt(0) is a blank)
return deblank(s.substring(1));
/I {s is not empty and s[0] is not a blank}
return s.charAt(0) +
deblank(s.substring(1));
¥

Check the four points:

0. Precise specification?

1. Base case: correct?

2. Recursive case: progress toward termination?
3. Recursive case: correct?

Checking palindrome-hood

A String with at least two characters is a palindrome if:
« its first and last characters are equal, and

o the rest of the characters form a palindrome:

have to be the same
e.g. Aw
has to be a palindrome
0. Precise specification?
1. Base case: correct?
2. Recursive case: progress
toward termination?
3. Recursive case: correct?

/¥* =“s is a palindrome” */
public static boolean isPal(String s) {
if (s.length() <= 1)
return true; base case
/I { s has at least two characters }
return s.charAt(0) == s.charAt(s.length()-1) && recursive case
isPal(s.substring(1, s.length()-1));

