
1!

1!

CS1110 22 Sep 2011!
Miscellaneous points !
 about classes.!
More on stepwise refinement.!

Next: wrapper classes.
Section 5.1 of class text !

Need Help?
• Make apptmnt with

Marschner or Gries.
• See consultant in

ACCEL Lab
• See a TA.
• Peer tutoring (free).
 Olin 167

Prelim,"
Thurs, 6 Oct, 7-9:30PM !
Conflict?!
Complete assignment
P1Conflict on CMS!

2!

The new-expression"

Some of you still are confused about how the new-
expression is evaluated. If you do not understand how it is
evaluated and cannot evaluate it yourself, you do not
understand classes and objects. So much of object-
oriented (OO) programming is embodied in evaluation of
the new expression —that you must understand it.!

Next slides: We again go through evaluation of a new-
expression. As we do it, copy everything we do onto your
own paper. Don’t understand? Ask a question!!!

After the lecture, memorize what we did!!

3!

t= new Book(“Truth is all”, 2345) ;!

Above is an assignment statement. If we ask you to evaluate
the expression in the assignment statement, you do that and
nothing more. You don’t mention variable t at all!!
Execution of the assignment consists of 2 steps:!
1.  Evaluate the expression (here, new Book(…)) and!
2.  Store the value of the expression in the variable (here, t)!

Why mention t when discussing evaluation of the expression?!

We ask you to be more precise and careful in what you do than
you have ever been —because programming requires it.
Remember what the Director of Google Research said (see
assignment A1 handout).!

4!

t= new Book(“Truth is all”, 2345) ;!

!
!
!
!
 !

b7!
Book!

Book(String, int)!
 … other methods!
 and fields!

In explaining how to evaluate the new-expression, you do NOT
need to know what the definition of class Book is. You do NOT
have to know what fields class Book has.!

Step 1. Draw an object of class Book; !
Step 2. Execute the constructor call;!
(you expect that it initializes the
fields of b7)!

t= new Book(“Truth is all”, 2345) ;!

constructor call!

Step 3. Use the name of the new
object (b7) as the value of the new-
expression.!

b7!
t ! !

If you want to complete the assignment, store the value in t.!
But it is NOT part of evaluating the new-expression.!

5!

Content of this lecture!
Go over miscellaneous points to round out your knowledge of
classes and subclasses. There are a few more things to learn
after this, but we will handle them much later.

•  Inheriting fields and methods and overriding methods.!
 Sec. 4.1 and 4.1.1: pp. 142–145!
•  Purpose of super and this. Sec. 4.1.1, pp. 144–145.!
•  More than one constructor in a class; another use of this.!
 Sec. 3.1.3, pp. 110–112.!
•  Constructors in a subclass —calling a constructor of the!
 super-class; another use of super. Sec. 4.1.3, pp. 147–148.!

6!

Employee c= new Employee(�Gries�, 1969, 50000);!
c.toString()!

a0!

Object!

name! �Gries�! start! 1969!

salary! 50,000.00!

getName() setName(String n) …!
toString()!

equals(Object) toString() !

Employee!

c! a0!

Which method toString()
is called?!
Overriding rule, or!
bottom-up rule:"
To find out which is used,
start at the bottom of the
class and search upward
until a matching one is
found.!

Terminology. Employee inherits methods and fields from
Object. Employee overrides function toString.!

Sec. 4.1,
page 142!

This class is on
page 105 of the
text.!

2!

7!

Purpose of super and this!
this refers to the name of the object in which it appears.!
super is similar but refers only to components in the partitions above.!

/** = String representation of this
Employee */!
public String toString() {!
 return this.getName() + ", year � +"
 getStart() + ", salary � + salary;!
} !

ok, but unnecessary!
/** = toString value from superclass */!
public String toStringUp() {!
 return super.toString();!
}!

necessary !

Sec. 4.1, pages
144-145!

a0!

Object!

name! �Gries�!

start! 1969!

salary! 50,000.00!

getName() "
setName(String n) {…}!
toString()!
toStringUp() { …}!

equals(Object) "
 toString() !

Employee!

8!

A second constructor in Employee"
Provide flexibility, ease of use, to user!

/** Constructor: a person with name n, year hired d, salary s */!
public Employee(String n, int d, double s) {!
 name= n; start= d; salary= s;"
 }!
/** Constructor: a person with name n, year hired d, salary 50,000 */!
 public Employee(String n, int d) {!
 name= n; start= d; salary= 50000; !
}!

First constructor"

Second constructor;
salary is always 50,000"

/** Constructor: a person with name n, year hired d, salary 50,000 */!
 public Employee(String n, int d) {!
 this(n, d, 50000); "
}!

 Another version of second
constructor; calls first constructor"

Here, this refers to the other constructor.
You HAVE to do it this way !

Sec. 3.1.3,
page 110!

9!

a0!
Object!

name! �Gries�! start! 1969!

salary!

10,000!

Employee(String, int)!
toString() getCompensation()!

toString() …!

Employee!

Executive!bonus!

Executive(String, int, double) !
getBonus() getCompensation()!
toString() !

50,000!

Calling a superclass
constructor from the
subclass constructor!

public class Executive extends Employee {!
 private double bonus; !
 /** Constructor: name n, year hired!
 d, salary 50,000, bonus b */!
 public Executive(String n, int d, double b) {!
 super(n, d);!
 bonus= b;!
 }!
}!

The first (and only the first) statement in
a constructor has to be a call on another
constructor. If you don�t put one in,
then this one is automatically used:!

!super();!

Principle: Fill in superclass fields first.!

Sec. 4.1.3, page 147!

10!

Anglicizing an Integer!
anglicize(�1�) is �one�"
anglicize(�15�) is �fifteen�"
anglicize(�123�) is �one hundred twenty three�"
anglicize(�10570�) is �ten thousand five hundred
seventy�"

/** = the anglicization of n.!
 Precondition: 0 < n < 1,000,000 */!
public static String anglicize(int n) {"
"
}!

11!

Principles and strategies!

Develop algorithm step by step, using principles and strategies
embodied in �stepwise refinement� or �top-down programming.
READ Sec. 2.5 and Plive p. 2-5.!

• Take small steps. Do a little at a time!
• Refine. Replace an English statement (what to do) by a
sequence of statements to do it (how to do it).!
• Refine. Introduce a local variable —but only with a reason"
• Compile often"
• Intersperse programming and testing"
• Write a method specifications —before writing the bodies!
• Separate your concerns: focus on one issue at a time!
!

12!

Principles and strategies!
• Mañana Principle.!
During programming, you may see the need for a new method.
A good way to proceed in many cases is to: !
1. Write the specification of the method.!
!
2. Write just enough of the body so that the program can be
compiled and so that the method body does something
reasonable, but no the complete task. So you put off completing
this method until another time —mañana (tomorrow) —but you
have a good spec for it.!
!
3. Return to what you were doing and continue developing at
that place, presumably writing a call on the method that was just
�stubbed in�, as we say. !
!

