
CS1110 lecture 5 13 Sept 2011
Testing; class Object; toString; static variables/methods

Reading for this lecture: Testing
with JUnit (Appendix I.2.4 &
pp. 385—388),

class Object (pp. 153-154),

function toString (pp. 112-113),

static variables and methods
(Sec. 1.5, p. 47).

Reading for next two lectures: Executing
method calls, if-statements, the return
statement in a function, local variables.
Chapter 2 except 2.3.8 and 2.3.9.

This reading will some clarify some
concepts, such as method parameters, that
we have had to gloss over so far.

A1: due Sat 17 Sept on CMS; form groups by Wed.
Ignore “Extended Until” on CMS.

(We put in a fake extension to work around a CMS limitation.)

1 2

Testing —using JUnit

Bug: Error in a program. (Always expect them!)
Debugging: Process of finding bugs and removing them.
Testing: Process of analyzing, running program, looking for bugs.
Test case: A set of input values, together with the expected output.

Get in the habit of writing test cases for a method from the
method’s specification —even before writing the method’s body.

A feature called JUnit in DrJava helps us develop test cases
and use them. You have to use this feature in assignment A1.

/** = number of vowels in word w.
Precondition: w contains at least one letter and nothing but letters*/
public int numberOfVowels(String w) {
 // (nothing here yet!)
}

3

1.! w1= new Worker(“Obama”, 1, null);
! Name should be: “Obama”; SSN: 1; boss: null.
2. ! w2= new Worker(“Biden”, 2, w1);
! Name should be: “Biden”; SSN: 2; boss: w1.

To create a testing framework: select menu File item new
JUnit test case…. At prompt, put in class name WorkerTester.
This creates a new class with that name. Save it in same
directory as class Worker.

The class imports junit.framework.TestCase, which provides
some methods for testing.

Need a way to run these test cases, to see whether the fields
are set correctly. We could use the interactions pane, but then
repeating the test is time-consuming.

Here are two test cases
Spec, headers for methods in class Worker
 /** Constructor: a worker with last name n (“” if none), SSN s,
 and boss b (null if none).
 Precondition: n is not null, s in 0..999999999 with no leading zeros.*/
 public Worker(String n, int s, Worker b)

/** = worker's last name */
public String getLname()

/** = last 4 SSN digits without leading zeroes. */
public int getSsn()

 /** = worker's boss (null if none) */
 public Worker getBoss()

 /** Set boss to b */
 public void setBoss(Worker b)

a1
Workerlname “Obama”

ssn 123456789
boss null

…

a0
Workerlname “Biden”

ssn 2
boss a1

…

a1 a0w2w1 4

String

String

int

Worker

int

Worker

/** Test constructor and getters*/
public void testConstructor() {
 Worker w1= new Worker(“Obama", 123456789, null);
 assertEquals(“Obama”, w1.getLname());
 assertEquals(6789, w1.getSSN4());
 assertEquals(null, w1.getBoss());

 Worker w2= new Worker(“Biden", 2, w1);
 assertEquals(“Biden”, w2.getLname());
 assertEquals(2, w2.getSSN4());
 assertEquals(w1, w2.getBoss());
}

Testing the constructor (also getter methods)

Click button Test in DrJava to call all “testX methods”.

assertEquals(x, y):

test whether x (expected)
equals y (computed);
print error msg. and stop
execution if they are not
equal.

Pg 488 lists some other
methods that can be used.

File->new JUnit test case … [save in same directory as WorkerTester.java]

5

“Child 2”

j0mom

pop

children

w0

0

name

Elephant
s0

isMale() …

“Mumsie”

nullmom

pop

children

null

1

name

Elephant
j0

isMale() …

“Opa”

nullmom

pop

children

null

1

name

Elephant
b0

isMale() …

“Popsi”

nullmom

pop

children

b0

2

name

Elephant
w0

isMale() …

“Child 1”

nullmom

pop

children

w0

name

L0

isMale() …
1

Elephant

A1 possible test
cases dealing with
the number of
children

4

Class Object: The superest class of them all

A minor mystery: since Worker doesn’t extend anything, it
seems that it should have only the methods we wrote for it.
But it has some other methods, too.

Java feature: Every class that does not extend another one
automatically extends class Object. That is,

! public class C { … }

is equivalent to

! public class C extends Object { …}
7

Because it is always there, to
avoid clutter, we don’t generally
draw the partition for superclass Object.
(A2 will be an exception).

Class Object: The superest class of them all
a1

Workerlname “Obama”

ssn 123456789
boss null

a1

Workerlname “Obama”

ssn 123456789
boss null

equals(Object)

toString()

…

So this… is really this.

Object

getBoss()
…

getBoss()
…

8

9

Method toString()

a1

Workerlname “Obama”

ssn 123456789

boss

toString()

null

equals(Object)

toString()

Object

Convention: c.toString() returns a
representation of folder c, giving info
about the values in its fields.

Put following method in Worker.

/** = representation of this Worker
* [etc., see full program] */
public String toString() {
 return …;
}

In appropriate places, the
expression c automatically
does c.toString()

getBoss()
…

10

Another example of toString()

/** An instance represents a point (x, y) in the plane */
public class Point {
! private int x; // the x-coordinate
! private int y; // the y-coordinate
! /** Constructor: An instance for point (xx, yy) */
! public Point(int xx, int yy) {

…
! }

! /** = a representation of this point in form “(x, y)” */
! public String toString() {
 !! return …;
! }
}

(getter and setter
methods not given

on this slide)

Function toString should give the values in the
fields in a format that makes sense for the class.

Example: “(3, 5)”

Fill these in

11

A static method appears not in each folder but only once, in the
file drawer.
Make a method static if it doesn’t need to be in a folder because
it doesn’t reference the contents of the “containing” folder.

/** = “b is c’s boss”.
 Precondition: b and c are not null. */
public static boolean isBoss(Worker b, Worker c) {
 return b == c.getBoss();
}

/** = “this object is the c’s boss”.
 Precondition: c is not null. */
public boolean isBoss(Worker c) {
 return this == c.getBoss();
}

keyword this refers
to the name of the
object in which it

appears

A static variable appears not in each folder but as a single entity
in the file drawer. It can be used to maintain information about
all the folders.
Declaration: (goes inside class definition, just like field declarations)
 private static int numberOfWorkers; // no. of Worker objects created
 …

a0

Workerlname “Biden”

a1

Worker“Obama”lname

numberOfWorkers 2
File drawer for class Worker

Reference the variable by Worker.numberOfWorkers.
Class, not var holding folder name

a1x

… …
a0y

12

