CS1110 Fall 2011 David Gries, Steve Marschner

Reading for this lecture and previous lecture:

Sections 1.1, 1.2, 1.3.

Lab 1 will give you practice with concepts and details of 1.2, 1.3.

PLive: Lesson 0, Lesson page 1.3, Activity 1-4.1.

Quiz 1 in class, Tuesday 6 Sept. (more about it later)

Results of last lecture's questionnaire

Number completed: 305 (about 50 students did not)
No programming experience: 171 (56%)
< 5 months experience: 73 (24%)
>= 5 months experience: 61 (20%)

Number not in science/engineering: 44 (14%)

Number expressing concern because of lack of experience compared to

others or the work load: 88 (29%)

2

This lecture

Types

int

 $double \ \ (\text{casting between int and } double)$

boolean

String

Variable (what it is)

Assignment statement (execution changes the value of a variable)

Declaration of a variable

3

Terminology

Programming language (Java, C, Fortran, Matlab, Python): a language in which people write programs, often to be executed on a computer.

Program: A set of instructions, written in a programming language, to be executed (carried out, performed) to get some task done. Like a recipe in a cookbook.

Machine language. The language of instructions that a computer is able to execute (carry out, perform).

Java Compiler. A program that translates a Java program into a machine language form so that it can be executed on a computer.

4

Type: A set of values together with operations on them.

Memorize this definition! Write it down several times.

Type integer:

values: ..., -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

operations: +, -, *, /, unary -

Type int:

-2³¹ .. 2³¹-1

values: -2147483648, -2147483647, ..., -3, -2, -1, 0, 1, 2, 3, 4, 5, ..., 2147483646, 2147483647

operations: +, -, *, %, /, unary - 7%3 is remainder when dividing 7 by 3

Principal: These int operations must yield an int.


b / c rounds toward 0

Integer.MIN_VALUE Integer.MAX_VALUE

Type: A set of values together with operations on them.

Type double:

values: Numbers in scientific notation, e.g.

Important points:

Only approximations to real numbers; can't represent all of them.

To distinguish between **int** and **double** numbers, **double** numbers always have period or exponent.

Can't use notation 10^6 —exponents have to be written differently.

6

Type: A set of values together with operations on them.

mantissa

Type double:

values: Examples: -22.51E6 equivalent to -22510000

or -22.51 * 106

22.51E-6 equivalent to .00002251

or 22.51 * 10-6

An approximation to the real numbers.

operations: +, -, *, /, unary
Double.MIN_VALUE 4.9E-324

Double.MAX_VALUE 1.7976931348623157E308

Casting between double and int

(double) 2 casts 2 to type double. Value is 2.0

A widening cast. Java does it automatically if necessary

(int) 2.56 casts 2.56 to type int. Value is 2

A narrowing cast. Java never does it automatically because it might lose information.

Other examples:
(double)(int) 2.56 Value is 2.0
(double) 2.56 Value is 2.56

Precedence of operators (page 23)

• Unary operators: + - !

• Binary arithmetic: * / %

• Binary arithmetic: +
• Arithmetic relations: <> <= >=

• Equality relations: == !=

• Logical and: &&

• Logical or: ||

You will practice working with expressions in Lab 01.

Iclickers
Have you registered your iclicker?

If not, visit
 atcsupport.cit.cornell.edu/pollsrvc/

Instructions on iclickers can be found here:
 atc.cit.cornell.edu/course/polling/clickers.cfm

Find these links on the course webpage —click
 "Texts" and scroll down on the page that opens.

• A variable is a name together with a value.

• A variable is a named box with a value in the box.

• A variable is a named box with a value in the box.

• Write it down several times.

• Here's variable x, with value 5. It can contain an int value.

• Here's variable area, with value 20.1. It can contain a double value.

A: I did it correctly! Goal of next 10 minutes: B: I drew another box named x Understand assignment statement C: I did something else Draw variable x on piece of paper: D: I did nothing -just watched For x, use the value in Step 1: evaluate the expression x + 2variable x. Write the value of the expression somewhere on your piece of paper Step 2: Store the value of the expression in x To store the value in x, cross off the old value and write the new value in box x Check to see whether you did the same thing as your neighbor, discuss it if you did something different.

Goal of next 10 minutes: A: I did it correctly! B: I drew another box named x Understand assignment statement C: I did something else You have this: D: I did nothing -just watched x × 22 Execute this command: Step 1: evaluate the expression 3 * x + 1Step 2: Store its value in x Check to see whether you did the same thing as your neighbor, discuss it if you did something different.

Goal of next 10 minutes: Understand assignment statement

You now have this:

Command:

Step 1: Evaluate the expression 3 * x + 1

Step 2: Store its value in x

This command is called an assignment statement. It tells YOU or the computer to DO something. Performing the command is called executing the command.

To execute the command, **you** evaluated the expression (3*x+1)and stored its value in the variable x.

This assignment statement is written in Java like this:

Step 1: Evaluate the expression 3 * x + 1 and

Goal of next 10 minutes:

You now have this: x × 22

Command:

Understand assignment statement

Step 2: Store its value in x

-the expression - the variable

When you are told to execute an assignment statement like this, first evaluate the expression and then store its value in the variable

Goal of next 10 minutes: Understand assignment statement A: I did it correctly!

B: I drew another box named y C: I did something else

D: I did nothing –just watched

Put another variable y on your piece of paper so that it looks like this:

x = x int

Execute this assignment statement:

v = x / v:

Check to see whether you did the same thing as your neighbor, discuss it if you did something different.

Declaration of a variable. p. 26

In Java, a declaration of a variable gives the name of the variable and the type of value it can contain.

Memorize these two definitions! Write them down several times.

int x;

Here's a declaration of x, indicating that it contain an int value.

double area;

Here's a declaration of area, indicating that it can contain a double value.

Assignment statement. p. 27 Execution of an assignment statement stores a value in a variable.

To execute the assignment

<var>= <expr>;

evaluate expression <expr> and store its value in variable <var>.

x=x+1; Evaluate expression x+1 and store its value in variable x.

Type: A set of values together with operations on them.

Type String: values: Any sequence of characters operations: + (catenation, or concatenation)

String literal: sequence of chars enclosed in double quotes: e.g. " abcex3\$g<&"

Here is String catenation: "bc" + "fg"

Question: what can you do to convert the value of an expr, e.g. 3.1459 + 4.1, to a String?

+ is overloaded: Consider x + y

- (1) If one operand (x or y) is a String, the other is converted to a String (if necessary) and catenation is done.
- (2) Otherwise, if one operand is a **double**, the other is cast to a **double** (if necessary) and a **double** addition is done.
- (3) Otherwise, both operands are ints and an int addition is done,

Quiz on Tuesday.

To find out about quizzes, visit the course webpage and click "Quizzes".

Quiz 01. In class, Tuesday, 6 Sept.

You need to know

- (1) Definition of "type" (see p. 7 of text)
- (2) how to execute the assignment statement (p. 28, box on top of page)

20

Recitations (Labs) in ACCEL LAB Start Today and Tomorrow!

You can help by bringing your own laptop

A: The explanation of assignment helped! I understand how to execute an assignment statement

B: I'm still confused about the

assignment statement.
C: I knew it before but you

confused me

D: Boring. I knew it already

Here are the times of the recitation-labs: Attend ONE of them.

Tuesday: 12:20, 1:25, 2:30, 3:35 Wednesday: 12:20, 1:25, 2:30, 3:35

To get to the ACCEL Lab, go into the Engineering Library in Carpenter Hall, walk straight until you come to a staircase on your left, and go up the stairs.

Do not be concerned if you haven't been able to register for a recitation section. Just go to the one you want this week.

21