
CS1110 Lab 01. Expressions, variables, declarations, assignments Fall 2011

This is webpage www.cs.cornell.edu/courses/cs1110/2011fa/handouts/labs/lab01.html
This lab deals with Java expressions and assignment statements, for the most part treating Java just as a calculator.
To open DrJava in a ACCEL-lab computer, use:

Start --> All programs --> Class Files --> DrJava --> "the jar file that is listed there"

Below is a list of expressions. Next to each, write down the value you think it is (Write "?" if you have no idea). In the third
column, write down the value that DrJava gives, by cutting and pasting each expression from the online pdf or html version of
this handout (see above link) into the Interactions pane and hitting the enter key to have the expression evaluated. If your
expected value was different from the calculated value, put an explanation in the fourth column of how you think the
calculated value was calculated .
When finished, show this sheet to your lab instructor, who will record that you did it. If you do not finish during the lab, finish
it within the next few days and show it to your lab instructor next week. This paper is yours to keep.
You may find it convenient to enlarge the Interactions pane: put the mouse on the horizontal bar running across the entire
window, hold down the mouse button, and drag the bar upwards. Also, you can use the up-arrow key to obtain a previous
expression; then you can edit the expression and hit the return key to have the modified expression evaluated.
Don't waste time! If you don't understand something, ask your lab instructor or a consultant immediately! You should
understand HOW each expression is evaluated, so if an answer doesn't make sense, ask someone. The lab instructors and
consultants are in the lab to help. They will look over your shoulder from time to time and give you advice.

INT EXPRESSIONS Expected value Calculated
value Reason for calculated value

5 + 2 * 5
(5 + 2) * 5
4 - 3 - 3
4 - (3 - 3)
-4 - -4 - -4
6 / 2
6 / 4
7 % 2
6 % 3
Integer.MIN_VALUE
Integer.MIN_VALUE + 1
Integer.MIN_VALUE - 1
Integer.MAX_VALUE + 1

DOUBLE
EXPRESSIONS

Expected
value

Calculated
value Reason for caculated value

5.0 + 2.0
(5 + 2.1) * 5
4.0 - 3 - 3
4.0 - (3 - 3)
6.0 / 2
6.0 / 4
6.0 % 3

-6.0 % 4
Double.MIN_VALUE
Double.MIN_VALUE + 1
Double.MAX_VALUE
Double.MAX_VALUE + 1
Double.MAX_VALUE +
Double.MAX_VALUE

We want you to figure out why an addition like Double.MIN_VALUE + 1 equals 1. Here is the explanation:

In Java, the mantissa in "mantissa E exponent" can only hold a certain maximum number of digits. Let's see how this causes
Double.MIN_VALUE + 1 to give 1:

Imagine a Java world where the mantissa can have only 3 digits. Both 3.24E5 and 32.4E5 can be stored in a double in this
imaginary java world, but not 32.46E5 because it contains 4 digits in the mantissa.

Using this restriction in this imaginary Java world, add up the two numbers 1.0E0 and 3.20E-2. 1 + 0.032 = 1.032 = 1.032E0,
right? But in our imaginary Java world where the mantissa can only hold 3 digits, the 2 would be dropped and imaginary Java
will return 1.03E0. In essence, the least significant digits are simply removed.

Now, using the same restriction, YOU add up the two numbers 1.00E0 and 1.00E-4 —remembering that at all times, each
mantissa is only 3 digits. What would imaginary Java return? This example should show you why Double.MIN_VALUE + 1
equals 1.

CASTING Expected value Calculated
value Reason for caculated value

(double) 4
(int) 4
(double) 7 / 4
(double) (7 / 4)
Which operator has higher
precedence, casting or division?
(rows above)

(int) 5.3
(double) (int) 5.3
(int) -5.3
7 / 4 + 5
(double) 7 / 4 + 5
7 / (double) 4 + 5
(double) (7 / 4 + 5)

BOOLEAN
EXPRS Expected value Calculated

value Reason for caculated value

3 < 5
3 < 5 && 5 < 3
true
true && false

true && true
false
true || false
true || true
!true
!false
!!false
true && false &&
true

true || false || true
true || (false &&
true)

true && (true ||
false)

false && (5 / 0 ==
1)

(5 / 0 == 1) &&
false

Why does the expression above not
work but the one above it does?

STRING
EXPRESSIONS Expected value Computed

value Reason for caculated value

"Truth " + "is " +
"best"

"Truth " + ("is " +
"best")

56 + "" + 56
"" + 4 / 2
("" + 4) / 2
4 + 2 + ""
4 + (2 + "")
What does + do if at least one
operand is a String?

Variables, declarations, and assignment statements

It is important that you know the difference between a declaration and an assignment statement. A declaration like

boolean b;

simply says that in the rest of the "program", a variable named j may be used and its type is boolean. On the other hand an
assignment like

b= 3 < 5;

is a command to do something: evaluate the expression 3<5 and store its value in variable b.

In Java, variables must be declared before they are used. In the newest version of DrJava, in the interactions pane, variables
must be declared before they are used. You can change this to allow uses of variables without declarations. Do this now: Use
menu item Edit->Preferences; in the window that opens, click on "Interactions pane" in the left column, and then uncheck the
appropriate box.

VARIABLES, DECLARATIONS, ASSIGNMENTS

Write the purpose
of a declaration
like "int j;".

Explain how the
assignment
statement "j= j +
5;" is executed.

Statement or
Expression

Expected value Calculated
value

Reason for caculated value

int j; None

j
j= 2; None
j
j= j + 9; None
j
k= 5; None
j + k

double w= j + k; None (a combination of a declaration of a variable and an
assignment to it)

w

FUNCTION CALLS Expected
value

Calculated
value

Reason for caculated value

Note: In the function call below, 25 and 4 are called the arguments of the call. In the third call below, the
arguments are 25 and Math.max(27, 4)
Math.min(25, 4)
Math.max(25, 4)
Math.min(25, Math.max(27, 4))
Math.abs(25)
Math.abs(- 25)
Math.ceil(25.6)
Math.floor(25.6)
Math.ceil(- 25.6)
Math.floor(- 25.6)

