
Cornell net id ________________________ Name ___________________________

Section day ________________________ Section time _______________________

 1

CS 100J Prelim 3 15 April 2008
This 90-minute exam has 6 questions (numbered 0..5) worth a total of 100 points. Spend a few minutes
looking at all questions before answering any. Budget your time wisely. Use the back of the pages, if you
need more space. We have a stapler at the front of the room, so you can tear the pages apart.

Question 0 (2 points). Write your netid and your name, legibly, at the top of each page (Hint: do it now).

Question 1 (18 points) Recursion. Write function hasName, defined below in
class Rhino —we put only the fields and methods needed for this question. Do not
use loops; you must use recursion. Do not write any other methods.

To the right is a possible tree for a rhino, showing the rhino (r1) and its known
ancestors.

Note that hasName is not a static function; it appears in every object of class
Rhino.

public class Rhino {

 private Rhino father; // this Rhino’s father (null if unknown)
 private Rhino mother; // this Rhino’s mother (null if unknown)
 private String name; // this Rhino’s name

 /** = “this rhino or one of its ancestors has name n. */
 public boolean hasName(String n) {

 }

father

mother

r1

r4 r5

mother

r3 r2

father

Cornell net id ________________________ Name ___________________________

Section day ________________________ Section time _______________________

 2

Question 2 (20 points). Exceptions.
(a) What is the output of the call P3.foo(), given the following definition for class P3?

class P3 {
 private static int calls = 0;

 public static void foo() {
 try {
 bar();

 System.out.println(“first bar done”);
 bar();

 }
 catch (Exception e) {
 System.out.println(“Exception!!”);
 }
 }

 private static void bar() throws Exception {
 if (calls > 0)
 System.out.println(“Call number “ + calls);
 else
 throw new Exception();
 }
}

(b) On the back of the previous page, write a subclass BadNumberException of class Exception
(which is a subclass of Throwable). It needs the usual two constructors.

(c) The specification of the following function has a precondition. (The function calculates the greatest
common divisor gcd(b,c) of b and c.) To make it easier to write robust code that calls this function,
change the function to throw a BadNumberException (with a suitable detail message) if the precondi-
tion is false — first change the specification; then change the body. Use the back of the previous page for
your answer. In writing the body, you don’t have to copy the cde shown below, but you do have to show
where it goes.

You don’t have to understand completely how the body works, but if you are interested, note that it rests
on two properties: (1) gcd(b, c) = gcd(c, b), and, for c > b, gcd(b, c) = gcd(b, c-b) be-
cause anything that divides b and c also divides b and c-b, and vice versa.

/** = the greatest common divisor of x and y.
 Precondition: x > 0 and y > 0. */
public static int GCD(int x, int y) {
 int b= x; int c= y;
 // invariant: gcd(x, y) = gcd(b, c) and b > 0 and c > 0
 while (b != c) {
 if (b < c) c= c – b;
 else b= b – c;

}
return b;

}

Cornell net id ________________________ Name ___________________________

Section day ________________________ Section time _______________________

 3

Question 3 (25 points). For-loops and arrays.

A magic square is a square where each row and column adds up to the same number (sometimes, one also
includes the diagonals, but for this problem, we won’t). For example, in the following 5-by-5 square, the
elements in each row and column add up to 70:

18 25 2 9 16
24 6 8 15 17
 5 7 14 21 23
11 13 20 22 4
12 19 26 3 10

(a.) Write the body of the following function —so that it returns true if all the rows sum to sum and re-
turns false otherwise. The body should use the given invariant.

/** = “all the rows of square array sq sum to sum”.
 Precondition: sq is not null and indeed is a square array. */
public static boolean areMagicRows(int[][] sq, int sum) {

 // invariant: each row 0..k-1 of sq sums to sum.

for (int ; ;) {

 // Return false if row k does not sum to sum.

}
// postcondition: each row 0..sq.length-1 sums to sum

return ;
}

Cornell net id ________________________ Name ___________________________

Section day ________________________ Section time _______________________

 4

 (b.) Now complete function isMagicSquare, whose specification is given below. Here are some
ground rules.

1. There should be one set of nested for-loops —do not write more for-loops or while-loops.

2. Do not use recursion.

3. We do not give you a postcondition or invariant for the loops. You do not have to write them, but it
may help you to do so.

/** = “sq is a magic square with sum sum”.
 Precondition: sq is not null and indeed is a square array. */
public static boolean isMagicSquare(int[][] sq, int sum){

}

Cornell net id ________________________ Name ___________________________

Section day ________________________ Section time _______________________

 5

Question 4 (12 points). Classes.
Answer the follow questions in a few sentences:

(a) Explain the "Inside out rule".

(b) Explain the two uses of this and super in Java.

(c) What is meant by "overriding a method"? How does one call an overridden method from within the
class that does the overriding?

Cornell net id ________________________ Name ___________________________

Section day ________________________ Section time _______________________

 6

Question 5 (23 points). Algorithms.

(a) On the back of the previous page, write down the four loopy ques-
tions used in developing or understanding a while loop.

(b) Consider an array segment d[p..q-1] of chars, where each
char is either ‘r’, ‘w’, or ‘b’. Write an algorithm (in Java) to swap the
elements of d[p..q-1] so that all the ‘r’s are first, then the ‘w’s, and
finally the ‘b’s. We expect you to:

(1) Draw a precondition for the algorithm; (2 points)

(2) Draw a postcondition for the algorithm; (4 points)

(3) Draw an invariant for a while loop (with initialization) for the prob-
lem; this invariant should lead to an algorithm that makes at most one
swap per iteration of its while loop. (6 points)

(4) Write the while loop with initialization, using the four loopy ques-
tions. The loop must be consistent with the invariant that you drew. To
swap to array elements, write simply “swap … and …”. (11 points).

Precondition:

Postcondition:

Invariant:

Code:

0 ___________ out of 02

1 ___________ out of 18

2 ___________ out of 20

3 ___________ out of 25

4 ___________ out of 12

5 ___________ out of 23

Total ________ out of 100

