Elementary graphics; intro to loops and for-loops

Reading: Sec. 2.3.8 and chapter 7 on loops.

The lectures on the ProgramLive CD can be a big help.

A5 is out: graphics, loops, recursion. Due Sat. Oct 30th.

Prelim 2: Tu Nov 9th, 7:30-9pm.
Conflicts? Submit CMS "assignment" "P2 conflicts" by Oct 26th.

Talks on Thursday Oct 21:
- Adaptive Drama Management: Bringing Machine Learning to Interactive Entertainment
 4:15pm, Upson B17
 (computer science, game design, social psychology)
- Computational Advertising
 7pm, Phillips 203
 (intersection of computer science and econ)

Prelim 2:
Tu Nov 9th, 7:30-9pm.
Conflicts? Submit CMS "assignment" "P2 conflicts" by Oct 26th.

Assignment A5: drawing with a Turtle

We'll use ACM's GraphicsProgram, which supplies a "GTurtle":
- point (x, y): where the "Turtle" is
- angle: the direction the Turtle faces
- a pen color
- whether the pen is up or down

Class GTurtle has methods for moving a GTurtle around, drawing as it goes.

Draw equilateral triangle with side lengths 30; turtle t ending up at starting point and facing the same direction:
- t.forward(30); t.left(120);
- t.forward(30); t.left(120);
- t.forward(30); t.left(120);

Graphical User Interfaces (GUIs): graphics.

A JFrame, with a "panel" on which you can draw

A “panel” in which you can draw

On the panel, each pair (x,y) indicates a “pixel” or picture element.

For Assignment 5, you need to understand that:
- x-coordinates increase rightward
- y-coordinates increase downward.

In A5, write methods to draw shapes and spirals, and draw things using recursive procedures.

From recursion to loops: doing things repeatedly

We write programs to make computers do things.

We often want to make them do things multiple times.

1. Perform n trials or get n samples.
 - A5: draw a triangle six times to make a hexagon
 - Run a protein-folding simulation for 10^6 time steps

2. Process each item in a given String, Vector, or other “list”
 - Compute aggregate statistics for a dataset, such as the mean, median, standard deviation, etc.
 - Send everyone in a certain (Facebook) group an individual appointment time

3. Do something an unknown number of times
 - ALVINN, the van that learned to drive itself, continuously watched human driving behavior and adjusted its model accordingly

From recursion to loops: doing things repeatedly

We've talked about recursion.

Alternatives:
- while-loops
- for-loops (special syntax for common special cases)

The for loop, for processing a range of integers

```
loop counter: i
initialization: int i = 2;
loop condition: i <= 200;
increment: i = i + 1
repetend or body: { x = x + i*i; }

The for-loop:
for(int i = 2; i <= 200; i = i + 1) {
    x = x + i*i;
}
```
Execution of the for-loop

The for-loop:

```java
for (int i = 2; i <= 200; i = i + 1) {
    x = x + i * i;
}
```

- **loop counter:** i
- **initialization:** int i = 2;
- **loop condition:** i <= 200;
- **increment:** i = i + 1

To execute the for-loop:
1. Execute **initialization**.
2. If **loop condition** false, terminate execution.
3. Execute **repetend**.

Application: URL analysis for search engines

Problem: how does a search engine (e.g., Google) decide which webpages are the most important to present?

(Small) part of the answer: use URL cues

* “Deep” URLs are usually less important, e.g.,
 www.fake.com/this/that/other/minor/tiny/detail.htm

This requires counting the number of slashes in a URL (given as a String).

You know a recursive solution; next slide: loop solution.

Note on ranges

(later, will make reasoning about loops easier)

- **2..5** contains 2, 3, 4, 5. It contains 5 + 1 – 2 = 4 values
- **2..4** contains 2, 3, 4. It contains 4 + 1 – 2 = 3 values
- **2..3** contains 2, 3. It contains 3 + 1 – 2 = 2 values
- **2..2** contains 2. It contains 2 + 1 – 2 = 1 values
- **2..1** contains 2. It contains 1 + 1 – 2 = 0 values

The number of values in **m..n** is **n + 1 – m**: "follower minus first"

In the notation **m..n**, we require always, without saying it, that

- **m <= n + 1** (so, “2..1” is OK but not “2..0”)
- If m = n + 1, the range has 0 values.

Application: Some Personalized Email (SPEM)

Problem: how can we get people to read our mass email messages?

One answer: make it personal.

- Only one recipient
- Customized message (“Hi Lisa, great seeing you at the talk yesterday. Don’t forget the meeting tomorrow”; “Hail Batman. This course needs a better class of Criminal. Don’t forget the meeting tomorrow”)
- We don’t want to add duplicate recipients to the list (people notice and hate getting redundant emails).

This requires storing individualized information, iterating over the items we stored, and figuring out msg/mail output.

Some Personalized Email (SPEM): design decisions

How shall we represent a group of recipients (e.g., TAs vs. students)?

The usual design problem: how should we lay everything out?

We want the functionality of Vectors (so we can add recipients), … but we want to modify that functionality to be suitable for our purposes (no adds of duplicate recipients, ability to mail each recipient).

- new class MailRecip with appropriate equals method [remember last lecture?], personalization and mailing methods
- new class MailGroup extending Vector, using MailRecip’s equals method to prevent addition of duplicates