CS1110 Fall 2010 Instructors: David Gries & Lillian Lee
website: www.cs.cornell.edu/courses/cs1110/2010fa/

CS1110: Java
• No prior programming experience
• No calculus
• Non-numerical problems
• Later assignments: processing images, games, playing music

CS112: Matlab
• No prior programming experience
• One semester of calculus
• Math- & engineering-type problems

Very interesting and accessible talk at 4:15 today, Upson B17: “Lessons from the Netflix Prize”, Robert Bell, AT&T Research

Methods to increase chances of success in the course.
1. Section/labs. In the ACCEL Lab, Carpenter Library 2nd floor. Guided exercises on computer, TA and consultants walking around, helping. Mandatory.
2. Quizzes. Let you know what material is important for you to know at that point. You will know quite clearly what the quiz will cover. Everyone expected to get A on each quiz.
3. Lectures: not 45 minutes of talking. See demos of programming and execution of programs almost every lecture. Also, some interactive work with you. We try to make it interesting.
4. Course text: CD at the back of book has 250 2-4 minute lectures, each on one specific point. CD missing? We’ll fix later.
5. One-on-one sessions beginning 3rd week. You work for 30 minutes with Gries, Lee, TA, or consultant on the computer.

CS130: Transition to OO (using Java)
CS132: Transition to Matlab
• Both require previous programming experience.
• Self-paced, 1 credit (4 weeks), S/U.
• Engineers take CS110-CS1132 or CS1112-CS1130.

CS1110 course outcomes:
(1) Basic understanding of object-oriented and procedural aspects of programming, as expressed in Java.
(2) Fluency in Java —ability to write programs using classes and subclasses, as well as assignments, conditionals, recursion, and loops.
(3) Knowledge of the basic API classes and their specifications.

6. First prog assignment, everyone eventually scores 10/10. Requires mastery. You submit and get feedback and resubmit until it is right.
7. “Interludes”, discuss some aspect of computing, internet, or CS to help you understand the computing world we live. Also, tidbits on time management, study skills, etc.
8. AEW Workshops. 1 credit, 2 hours. No homework. Small, collaborative classes parallel to course. No class this week. See link on course website, talk to advisors in Olin 167.
9. Iclickers. Everyone: get your own clicker. By Tuesday. We use them to judge the sense of understanding of the class, to encourage staying alert, perhaps to give quizzes, attendance, etc.

Course Management System. Visit cms.csuglab.cornell.edu/

Two things to do this weekend
1. Get on the Course Management System (CMS) for this course. Get to it from the link on the course website.
 Not registered on our CMS? Email Maria Witlox, mwitlox@cs.cornell.edu, ask her to register you.
 She needs your netid.

2. Get DrJava working on your computer. It’s free. See course website for info. Problems with it? You can wait, but do try.
 course website: www.cs.cornell.edu/courses/cs1110/2010fa/
Reading for this and the next lecture:
Sections 1.1, 1.2, 1.3. Lab 1 will give you practice with concepts and details of 1.2, 1.3. You will not understand all the reading because there are many new terms, but doing the reading will enhance next lecture.

PLive: Lesson 0, Lesson page 1.3, Activity 1-4.1.

Summary of lectures: On course website, click “Lecture summaries”.

Today and Tuesday:
• Introduce expressions in Java (using DrJava)
• Show you around the CD ProgramLive

DrJava. We write programs using the free IDE (Integrated Development Environment) called DrJava. Download it from the course website.

Terminology
Programming language (Java, C, Fortran, Matlab, Python): a language in which you write programs, often to be executed on a computer.

Program: A set of instructions, written in a programming language, to be executed (carried out, performed) to get some task done. Like a recipe in a cookbook.

Machine language. The language of instructions that a computer is able to execute (carry out, perform).

Java Compiler. A program that translates a Java program into a machine language form so that it can be executed on a computer.

Type: A set of values together with operations on them.

Memorize this definition! Write it down several times.

Type integer:
values: ..., −3, −2, −1, 0, 1, 2, 3, 4, 5, ...
operations: +, −, *, /, unary –

Type int: \(-2^{31}, 2^{31} - 1\)
values: −2147483648, −2147483647, ..., −3, −2, −1, 0, 1, 2, 3, 4, 5, ..., 2147483646, 2147483647
operations: +, −, *, /, unary –

Type double:
values: Examples: \(-22.51 \times 10^6\) equivalent to \(-22510000\)
or \(-22.51 \times 10^6\) equivalent to \(.00002251\)
An approximation to the real numbers.
operations: +, −, *, /, unary –

Type boolean
Values: true false
Operators: and && or || not !

Precedence of operators (page 23)
• Unary operators: + − !
• Binary arithmetic: * / %
• Binary arithmetic: + −
• Arithmetic relations: < > <= >=
• Equality relations: == !=
• Logical and: &&
• Logical or: ||

The next lecture will also discuss:
Types boolean (p. 20) and String (p. 22)
You will use these things in Lab 01.