Interesting algorithms to develop
CS1110

Submit your solutions, in any language, to gries or
lee. Please try to give some documentation to help
the reader understand correctness

These problems are for those who have had previous
programming experience to be able to compare their
programming skills now with their skills in 3-4 weeks.
Doing these problems is voluntary, but we too are
interested in how well you do now, so please send us
your solutions.

Do them using your current knowledge. It doesn’t help
to look up the solutions elsewhere and copy. No one
learns anything from that.

3/23/09

Dutch National Flag

Given is an int array segment b[0..n]. Write an algorithm to swap the
elements to put the negative ones first, then all the zeros (there may be
many of them, who knows?) and then the positive ones. The only way the
elements should be changed is to swap two of them. You can write this, for
example, as

Swap b[i] and bl[j].

Below, P shows the precondition and Q the postcondition, as pictures

0 n

| (valuesin0..n are unknown)

0 n
Q:b‘ <0 ‘ =0 >0 ‘

Partition algorithm: Given an array b[h..k] with some value x in b[h]:
h k

Pib [x| ? |

Swap elements of b[h..k] and store in j to truthify Q:
h i k

Qb ‘ <=x ‘x‘ >=x ‘

h k
change‘ bl354162381 for this input, there are

many solutions, two of

h i k which are these.

into b[121354638
Later, you will see that
h . K Partition is an important
_ part of a famous sorting
or b| 123134568 algorithm called Quicksort.

x is called the pivot value.
x is not a program variable; x just denotes the value initially in b[h].

Binary search: Vague spec: Look for v in sorted array segment b[h..k].
Better spec:

Precondition P: b[h..K] is sorted (in ascending order).

Store in i to truthify:

Postcondition Q: b[h..i] <=v and v < b[i+1..k]

Below, the array is in non-descending order:

ob ‘ h 3 k ‘ Called binary search
: because each
iteration of the loop
h i k cuts the array
Q: b\ <=v >V ‘ segment still to be

processed in half

So, at the end, if v is in b[h..k], b[i] is the rightmost occurrence of v. If v is not in
b[h..k], it belongs between b[i] and b[i-1].

Remove adjacent duplicates

change: 0 n
b[1224227899909 |
into 0 n don’t care what is in
b[124278989999 | pjwtn
Truthify:
b[0..h] = initial values in b[0..n] but with adjacent duplicates removed
h k
Precondition P: b ‘ ? ‘
h i k

Postcondition Q: b

initial values of b[0..k] ‘unchanged ‘
with no adj. duplicates

Saddleback search

Given is a two-dimensional array b[0..m][0..n]. Each row and
column is in ascending order. An example appears below. A value
X is guaranteed to be in b[0..m, 0..n].

Write an algorithm to find x —store in i and j so that x = b[i][j]-
How fast is your algorithm? Are you using the fact that the rows
and columns are sorted to get a fast algorithm?

b 0123
0l2 445 if x is 7, there are two
112 45686 possible answers: [2, 3]
213457 and [4, 2]. Either one
3|13 558 may be used.
413679

