
1

1

CS1110 23 April 2009 Ragged arrays

Reading for today: sec. 9.3.
Reading for next time: sec. 2.5 pp. 83-86 and sec. 4.5 pp. 156-162.

We posted the skeleton for class BigInt from prelim III to the course
website; you can use it to try re-doing P3 on a computer for study
purposes. (Again: we recommend testing your sample-exam solutions
at a computer; this includes the “draw folders” questions.)

• The final exam is Friday May 8th, 9:00am-11:30am, Barton Hall (west
side). Please contact mwitlox@cs.cornell.edu ASAP regarding conflicts.
• Graded prelim IIIs can be retrieved from Upson 360, M-F 10am-noon and
2-4pm; bring ID.
• Assignment A7 is due Thursday the 30th.
• The labs next week are optional, and will simply serve as office hours (in the
usual lab location).

2

Some mysteries: an odd asymmetry, and strange toString output (see demo).

Type of d is int[][]

 (“int array array”/ “an array of int arrays”)

To declare variable d:

 int d[][];

To create a new array and assign it to d:

 d= new int[5][4];

or, using an array initializer,

 d= new int[][]{ {5,4,7,3}, {4,8,9,7}, {5,1,2,3}, {4,1,2,9}, {6,7,8,0} };

5 4 7 3

4 8 9 7

5 1 2 3

4 1 2 9

6 7 8 0

d

0 1 2 3

0
1

4

2

3

Review of two-dimensional arrays

Number of rows of d: d.length

Number of columns in row r of d: d[r].length

3

How multi-dimensional arrays are stored: arrays of arrays�

int b[][]= new int[][]{ {9, 6, 4}, {5, 7, 7} };

b a0 a0
r0
9

6

4

0
r1
5

7

7

0
r0

r1

0

1

b holds the name of a one-dimensional array object of b.length
elements; its elements are 1D arrays.

b[i] holds the name of a 1D array of ints of length b[i].length.

1 1

2 2

java.util.Arrays.deepToString recursively creates an appropriate String.

9 6 4
5 7 7

4

Ragged arrays: rows have different lengths�

b a0 a0
r0
17

13

19

0
r1
28

95

0
r0

r1

0

1

int[][] b; Declare variable b of type int[][]

b= new int[2][] Create a 1-D array of length 2 and store its

 name in b. Its elements have type int[] (and start as null).

b[0]= new int[] {17, 13, 19}; Create int array, store its name
 in b[0].

b[1]= new int[] {28, 95}; Create int array, store its name in b[1].

1

2

1

2

5

Application: “triangular” data
 One example: array dist in which dist[i][j] would be the same as dist[j][i].
 Another: Pascal’s triangle (represents a function with interesting symmetries) �

 1

 1 1

 1 2 1

 1 3 3 1

 1 4 6 4 1

 1 5 10 10 5 1
The first and last entries of each row are 1.

Each other entry is the sum of the two entries above it.

Row r has r+1 values.

(Coloring the odd numbers starts to look like Sierpinski’s triangle…)

0

1

2

3

4

5

…

6

Pascal’s Triangle� 1

 1 1

 1 2 1

 1 3 3 1

 1 4 6 4 1

 1 5 10 10 5 1

Entry p[i][j], entry j of row i, is the number of ways j
elements can be chosen from a set of size i !

p[i][j] = “i choose j” =

0

1

2

3

4

5

()i�
j

recursive formula (computed via dynamic programming):�
 for 0 < i < j, p[i][j] = p[i–1][j–1] + p[i–1][j]

7

Pascal’s Triangle� 1

 1 1

 1 2 1

 1 3 3 1

 1 4 6 4 1

 1 5 10 10 5 1

Binomial theorem: Row r gives the coefficients of (x + y) r

(x + y)2 = 1x2 + 2xy + 1y2

(x + y)3 = 1x3 + 3x2y + 3xy2 + 1y3

(x + y)r = ∑ (k choose r) xkyr-k �
 0 ≤ k ≤ r

0

1

2

3

4

5

8

Large collections of association data abound, but often, many possible
associations have the default value.

 Netflix data: (movie, rater, score): 480K × 18K = 8.6B possible
scores to track, but there are only (!) 100M actual scores.

 GroupLens data (freely distributed by U. Minn): the small set has
943×1682= 1.5M possibilities, but only 100K actual scores.

Main idea:
 DON’T store an int array of length 1682 for each movie;
 store a rater-sorted array of score objects corresponding to just the

raters who scored that movie (avg. length: 59!).

Another very useful technique (among many more substantive ones;
take more CS courses!): map the movie/rater names to ints, b/c they
can be meaningful array indices.

Application: representation of (irregular) sparse data�

