
4/6/09

1

CS1110      07 April 2008          Exceptions in Java. 
Today’s reading: Ch. 10. Next lecture’s reading: Ch 17.

(Most) on-duty consultants now identifiable by stylish headgear.

Prelim 3 next Tuesday (April 14), 7:30-9pm, Ives 305
• See “about Prelim III” handout
• Pick up graded quizzes from last time (up front)
• There is a review session Sunday April 12th, 1-3pm, Phillips 101.
Slides will be posted on the website.
• Prelim 3 is, like Prelim 2, cumulative:

• Look over your Prelim 2 and the P2 solutions (posted to the
website, with fix of edit error in solution to last question).

•  Uncollected P2s can be retrieved from Upson 360, M-F 10am-
noon and 2-4pm with ID card.

FYI: we promised to tell you: the first weighted-die code we saw (March 10) maintains the
invariant “Either r >= iStart or r is in segment i-1, where iStart is the start of segment i”.

A6 due Saturday.

1

Today’s topic: when things go wrong (in Java) 

Q: What happens when an error cause the system to abort?

Important example: a “regular person” enters malformed input.

Understanding this helps you debug.

(NullPointerException, ArrayIndexOutOfBoundsException, …)

Q: What if termination isn’t the right thing to do?

It is better to warn and re-prompt the user than to have
the program crash (even if they didn’t follow your
exquisitely clear directions).

2

Understanding this helps you write more flexible code.

errors (little e) cause Java to throw a Throwable object

Throwable
a0

“/ by zero”detailMessage

backtrace
…

Exception

RuntimeException

ArithmeticExceptionErrors are
signals that

things are
beyond help.

Exceptions are
signals that help
may be needed;
they can be
“handled”.

Throwable

Exception Error

RuntimeException

ArithmeticException

… …

… …

OutOfMemoryError
… <call stack>

3

/** Illustrate exception handling */
public class Ex {
 public static void first() {
 second();
 }

 public static void second() {
 third();
 }

 public static void third() {
 int x= 5 / 0;
 }
}

Ex.first();

AE
a0

AE
a0

AE
a0

4

ArithmeticException: / by zero
 at Ex.third(Ex.java:13)
 at Ex.second(Ex.java:9)
 at Ex.first(Ex.java:5)
 at sun.reflect.NativeMethodAccessorImpl.�
 invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(…)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(…)
 at java.lang.reflect.Method.invoke(Method.java:585)

System prints the call-stack
trace on catching exception:

The Throwable is thrown to
successive “callers” until
caught. Here, Java catches it
because nothing else does.

4/6/09

2

Execute the try-block. If it
finishes without throwing

anything, fine.

If it throws an
ArithmeticException

object, catch it (execute
the catch block); else

throw it out further.

/** = recip(x) + recip(x*x), or -1 if x is 0*/
public static double computeResult(int x) {

 return recip(x) + recip(x*x);

}

try {

} catch (ArithmeticException ae) {
 return -1;
}

5

Try-statements catch and handle Throwables.

/** = reciprocal of x. Thows an ArithmeticException if x is 0.
 (suppose this is third-party code that you can’t change)*/
public static double recip(int x) {
 …;
}

/** = recip(x) + recip(x*x), or -1 if x is 0*/
public static double computeResult(int x) {

 return recip(x) + recip(x*x);

}

If (x != 0) {

} else {
 return -1;
}

6

Try-statements vs. if-then checking

This was meant to be a small example. Use your judgment:
• For (a small number of) simple tests and “normal” situations, if-
thens are better.
• If the caller, not the method itself, should decide what should
be done, throw an exception (like recip() does).
•  There are some natural try(catch) idioms…

/** Illustrate exception handling */
public class Ex {
 public static void first() {
 second();
 }

 public static void second() {
 third();
 }

 public static void third() {
 throw new �
 ArithmeticException�
 ("I threw it");
 }
}

Ex.first();
ArithmeticException: I threw it
 at Ex.third(Ex.java:14)
 at Ex.second(Ex.java:9)
 at Ex.first(Ex.java:5)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(…)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(…)
 at java.lang.reflect.Method.invoke(Method.java:585)

AE
a0

AE
a0

AE
a0

7

We can create new
Throwable objects
ourselves.

We can write our own Exception subclasses,  
but we may need a “throws” clause to compile  

/** Class to illustrate exception handling */
public class Ex {
 public static void first() throws MyException {
 second();
 }
 public static void second() throws MyException {
 third();
 }
 public static void third() throws MyException {
 throw new MyException("mine");
 }

Don’t worry
about whether

to put a throws
clause in or not.

Just put it in
when it is

needed in order
for the program

to compile.

8

