
1

1

CS1110 2 April 2009�
Sorting: insertion sort, selection sort, quick sort�

Do exercises on pp. 311-312 to get familiar with concepts
and develop skill. Practice in DrJava! Test your methods!

Course website
contains more

prelims and answers, �
for Prelim 1, 2, and 3

Time spent on A5:

min 2 (11 students)
average 5.7
median 5
max 15

15 students took 9-14 hours
26 students took 7-8 hours

2

Comments on A5�

Recursion:
Make requirements/descriptions less
ambiguous, clearer; give more direction.
Should be a part where you can create
your own recursive functions
Need optional problem with more
complicated recursive solution would
have been an interesting challenge, more
recursive functions.
Do more of recursive graphics-type
problems. They really make us think!
Make task 5 easier. I could not finish it.
Include a clue that more than one
recursive call can be included in a
recursive method. I wasted hours
because I didn't know this.

Clarify clear(), setPanel-
Size(). Improve graphic
rendering. Explain diff

between JFrame and JPanel

Liked not having to
write test cases!

Needed too much
help, took too long

Add more methods;
it did not take long

Give us the option to do the
recursive methods with loops

rather than recursively.

3

Sorting:

 ?
0 n

pre: b sorted
0 n

post: b

 sorted ?
0 i ninsertion sort

inv: b

for (int i= 0; i < n; i= i+1) {

}

“sorted” means in ascending order

2 4 4 6 6 7 5
0 i

2 4 4 5 6 6 7
0 i

Push b[i] down into its sorted
 position in b[0..i];

Iteration i makes up to i swaps.
In worst case, number of swaps needed is
0 + 1 + 2 + 3 + … (n-1) = (n-1)*n / 2.

Called an “n-squared”, or n2, algorithm.

b[0..i-1]: i elements

in worst case:

Iteration 0: 0 swaps
Iteration 1: 1 swap
Iteration 2: 2 swaps
… 4

 ?
0 n

pre: b sorted
0 n

post: b

Add property to invariant: first segment contains smaller values.

 ≤ b[i..], sorted ≥ b[0..i-1], ?
0 i n

invariant: b
selection sort

 sorted ?
0 i n

invariant: b
insertion sort

for (int i= 0; i < n; i= i+1) {

}

2 4 4 6 6 8 9 9 7 8 9
i n

2 4 4 6 6 7 9 9 8 8 9
i n

7
int j= index of min of b[i..n-1];

Swap b[j] and b[i];

Also an “n-squared”, or n2, algorithm.

5

Quicksort/** Sort b[h..k] */
public static void qsort(int[] b, int h, int k) {

}

if (b[h..k] has fewer than 2 elements)�
 return;

j= partition(b, h, k);

 <= x x >= x
 h j k

post: b

x ?
 h k

pre: b

int j= partition(b, h, k);

// b[h..j–1] <= b[j] < b[j+1..k]

// Sort b[h..j–1] and b[j+1..k]

qsort(b, h, j–1);

qsort(b, j+1, k);

To sort array of size n. e.g. 215

Worst case: n2 e.g. 230

Average case:�
 n log n. e.g. 15 * 215

 215 = 32768

6

Tony Hoare,

in 1968

Quicksort author

Tony Hoare

in 2007

in Germany

Thought of Quicksort in ~1958. Tried to explain it to a
colleague, but couldn’t.
Few months later: he saw a draft of the definition of the
language Algol 58 –later turned into Algol 60. It had recursion.
He went and explained Quicksort to his colleague, using
recursion, who now understood it.

2

Viewpoint On teaching programming Reply

7

I don't like how we are forced
to visualize things in Dr. Gries'
way. … Entire point of
programming is to be able to
look at things in different ways
and come up with different
solutions for one problem.
Forcing us to think of things in
his way and testing us on it has
been detrimental to my learn-
ing because in my opinion it
wastes time and confuses me.
This course should focus more
on solving problems rather
than drawing folders to
represent objects.

1. A model of execution of Java
programs is needed in order to
bring understanding.
2. Problem solving is the focus.
The programs you wrote for
A5, the algorithms we are now
studying, and the way we
develop them, could not have
been possible without the basics
that we have given you.
3. We are giving you tools for
coming up with good solutions,
not just different ones.

The NATO Software Engineering Conferences
homepages.cs.ncl.ac.uk/brian.randell/NATO/

 7-11 Oct 1968, Garmisch, Germany
27-31 Oct 1969, Rome, Italy

Download Proceedings, which
have transcripts of discussions.
See photographs.

Software crisis:
Academic and industrial people.
Admitted for first time that they did
not know how to develop software
efficiently and effectively.

9

Software
Engineering,

1968

Next 10-15 years: intense period of research of software
engineering, language design, proving programs correct, etc.

10Software Engineering, 1968

During 1970s, 1980s, intense research on�
How to prove programs correct,�
How to make it practical, �
Methodology for developing algorithms

11

The way we understand
recursive methods is based on
that methodology.
Our understanding of and
development of loops is based
on that methodology.

Throughout, we try to give
you thought habits to help you
solve programming problems
for effectively

Mark Twain: Nothing needs changing
so much as the habits of others.

12

The way we understand
recursive methods is based on
that methodology.
Our understanding of and
development of loops is based
on that methodology.

Throughout, we try to give
you thought habits to help
you solve programming
problems for effectively

Simplicity is key:
Learn not only to simplify,
learn not to complify.

Separate concerns, and
focus on one at a time.

Don’t solve a problem
until you know what the
problem is (give precise
and thorough specs).

Develop and test
incrementally.

Learn to read a program at
different levels of
abstraction.

