
3/29/09

1

1

CS1110 31 March 2008 �
Algorithms on arrays Reading: 8.3–8.5

The searching, sorting, and other algorithms will be on the
course website, along with a JUnit testing class for them.

Haikus (5-7-5) seen on Japanese computer monitors

Yesterday it worked.�
Today it is not working.�
Windows is like that.

A crash reduces�
Your expensive computer�
To a simple stone.

Three things are certain:�
Death, taxes, and lost data.�
Guess which has occurred?

Serious error.�
All shortcuts have disappeared.�
Screen. Mind. Both are blank.

The Web site you seek
Cannot be located, but�
Countless more exist.

Chaos reigns within.�
Reflect, repent, and reboot.�
Order shall return. 2

Horizontal notation for arrays, strings, Vectors

Example of an assertion about an array b. It asserts that:
1.  b[0..k–1] is sorted (i.e. its values are in ascending order)
2.  Everything in b[0..k–1] is ≤ everything in b[k..b.length–1]

b <= sorted >=
0 k b.length

b
0 h k

Given the index h of the First element of a segment and
the index k of the element that Follows the segment,
the number of values in the segment is k – h.

b[h .. k – 1] has k – h elements in it.

h h+1

(h+1) – h = 1

3

How to make invariant look like initial condition

pre b ?
0 n

inv b reds whites ? blues
0 j k l n

1. Make red, white, blue section empty: use formulas for
no. of values in these sections, set j, k , l so that they have
0 elements.

2. Compare precondition with invariant. E.g. in
precondition, 0 marks first unknown. In invariant, k marks
first unknown. Therefore, k and 0 must be the same.

4

How to learn these algorithms
(Need to know dutch national flag and binary search for quiz).

1. Practice writing pre- and post-conditions. If we say “Dutch
National Flag”, you should be able to write them down.

2. Practice developing the invariant from the pre- and
post-conditions.

3. Practice developing the loop (with initialization), using
the four loopy questions.

5

Binary search: Vague spec: Look for v in sorted array segment b[h..k].
 Better spec:
Precondition P: b[h..k] is sorted (in ascending order).

Store in i to truthify:
Postcondition Q: b[h..i] <= v and v < b[i+1..k]

Below, the array is in non-descending order:

 ?
h k

pre P: b

 <= v > v
h i k

post Q: b

Called binary search
because each iteration
of the loop cuts the
array segment still to
be processed in half

Eg. b[h..k] is (2, 2, 2, 2, 5, 7, 7, 8)
v i
1 h–1
2 h+3
3 h+3
9 h+7

v in: i is index of rightmost occurrence
v not in: it belongs between b[i], b[i+1] 6

Binary search: b[h..k] is sorted (ascending order)

 ?
h k

pre P: b

 <= v > v
h i k

post Q: b

Called binary search
because each iteration
of the loop cuts the
array segment still to
be processed in half

Write down an invariant

3/29/09

2

7

How many iterations does binary search make?

Suppose k-h is a power of 2.

How many iterations does
binary search perform?

p s^p
0 2^0 = 1
1 2^1 = 2
2 2^2 = 4
3 2^3 = 8
4 2^4 = 16
5 2^5 = 32
6 2^6 = 64
… …i t (t–i) / 2 so next value of t is

0 16 8 8
0 8 4 4
0 4 2 2
0 2 1 1
0 1

0 2^n 2^(n-1) 2^(n-1)

Requires ~ n iterations
for an array segment
of size 2^n

88

Partition algorithm: Given an array b[h..k] with some value x in b[h]:

 x ?
h k

P: b

 <= x x >= x
h j k

Q: b

 3 5 4 1 6 2 3 8 1 b
h k

change:

into 1 2 1 3 5 4 6 3 8b
h j k

x is called the pivot value.
x is not a program variable; x just denotes the value initially in b[h].

Swap elements of b[h..k] and store in j to truthify P:

 1 2 3 1 3 4 5 6 8b
h j k

or

Algorithm is an
important piece of the

most famous sorting
algorithm, quicksort

9

Reversal: Reverse the elements of array segment b[h..k].

 reversed
h k

postcondition Q:

 not reversed
h k

precondition P:

 1 2 3 4 5 6 7 8 9 9 9 9 b
h k

Change:

into 9 9 9 9 8 7 6 5 4 3 2 1b
h k

10

Check whether two arrays are equal

/** = “b and c are equal” (both null or both contain�
 arrays whose elements are the same) */
public static boolean equals(int[] b, int[] c) {

}

