
1

1

CS1110 26 March 2009 �
Developing array algorithms: initial considerations

•  We’ve added more consulting hours, so they are now:
Mon-Thu 4pm-10pm, Sat 2pm-6pm, ACCEL green room

•  Reading for next time: same as today, 8.5.

•  A6 out, due Sat. April 11. You get to design your own solutions to an
interesting problem ! But this means you have to design your own
solutions to a significant problem . We suggest reading through A6
ASAP, and starting early.

•  Graded prelim 2s available up front.�

Arrays are often the most efficient way to store and work with
data, so we need to know how to solve problems involving arrays.

2

Recall that an invariant is an assertion about variables/state that is
true before and after execution.

Working with invariants takes practice, but is well worth it:

“democracy is the worst form of Government except all those other

forms that have been tried” (Churchill)

We have to “start simple” today to get the basics down, but keep in
mind: In “real” life (and/or CS1110), thinking about (array)
invariants helps with:

•  writing the book-keeping parts of your program (thus
preventing bugs); but also

•  coming up with main solution ideas to hard problems; and

•  understanding what (your or others’) code is doing

3

The previous methodology, with some addenda:

First, specify the algorithm by giving its precondition and

postcondition, using a pictorial notation.

Then, find an invariant by drawing another picture that
“generalizes” the precondition and postcondition, since the
invariant is true at the beginning and at the end.

Then, answer the 4 loopy questions (which you might as well
memorize):

1.  How does loop start (how to make the invariant true)?

2.  When does it stop (when is the postcondition true)?

3.  How does repetend make progress toward termination?

4.  How does repetend keep the invariant true?

4

Invariant as picture: Combining pre- and post-condition

Here’s a simple problem we can already solve, just to introduce notation.

Count the number of zeroes in an array. Given array b satisfying
precondition P, store a value in x to truthify postcondition Q:

 ? and n >= 0

0 n

P: b

x is the number of 0’s in this segment

0 n

Q: b

(values in b[0..n]
are unknown)

Formal, albeit pictorial, notation:

2

5

The invariant as picture: Combining pre- and post-condition

Put negative values before non-negative ones via swaps.
(Application: separating different types of items; faster than
sorting.)

Given precondition P:

(vals in b[0..n-1] are unknown)
 ?

0 n

P: b

 < 0 >= 0

0 k n

Q: b

Swap the values of b[0..n-1] and store in k to truthify Q:

(values in b[0..k-1] are < 0,

 values in b[k..n-1] are >= 0)

6

The invariant as picture: Combining pre- and post-condition

Dutch national flag. Swap values of 0..n-1 to put the reds first, then
the whites, then the blues. That is, given precondition P, swap values
in b[0.n-1] to truthify postcondition Q:

 ?

0 n

P: b

 reds whites blues

0 n

Q: b

(vals in b[0..n-1] are unknown)

7

Remove adjacent duplicates

 1 2 2 4 2 2 7 8 9 9 9 9
b

0 n
change:

into
 1 2 4 2 7 8 9 8 9 9 9 9
b

0 h n

Truthify:

b[0..h] = initial values in b[0..n] but with adj dups removed

don’t care what is
in b[h+1..n]

 ?

0 n

Precondition P: b

initial values of b[0..n] unchanged�
with no duplicates

0 h n

Postcondition Q: b

