CS1110 10 March 2009
While loops

Reading: today: Ch. 7 and ProgramLive sections.

For next time: Ch. 8.1-8.3

Prelim in two days: Th 7:30-9pm Uris Aud. (GO1)
AS due in one day: Wed 11:59pm

Two handouts for today; keep them both out.

Beyond ranges of integers: the while loop
while (<condition>) { <condition>: a boolean expression.

sequence of declarations
<repetend>: sequence of statements.
and statements

}

In comparison to for-loops: we get a broader notion of “there’s still
stuff to do” (not tied to integer ranges), but we must ensure that
“condition” stops holding (since there’s no explicit increment).

Canonical while loops

// simulate for (int k= b; k <= c; k= k+1)
int k=b;
while (k <=c¢) {

Process k;

k=k+1;

/I process a sequence of input not of fixed size
<initialization>;
while (<still input left>) {

Process next piece of input;

make ready for the next piece of input;

2
Interesting while loops (why are the invariants missing?)
// Von Neumann’s “fair coin” from // open q. in mathematics
/I unfair coin public static boolean collatz(int n) {
// heads/tails is true/false while (n '= 1) {
public static boolean fairFlip() { if (n%2 == 0) {
while (true) { n=n/2;
f1= new unfair flip; }
2= new unfair flip; else {
if (f1 && !f2) { n=3%n+1;
return true; }
} }
if (Ifl && f2){ return true;
return false; }
}
) 4
}

A weighted die - extremely useful for scientific simulations

double r= Math.random() draws r uniformly at random from [0,1).

Problem: use this to produce an int in 0..n-1 given (non-zero, correct) probs
Pr(i) foriin 0..n-1.

Idea: the Pr(i) divide [0,1) into segments proportional to Pr(i).
So, loop through the segments to find the one containing r.

‘Pr(()=.2 | Pr()=.3 Pr(2)=.‘1 Pr(3=.4

\ \
Seg 0 star‘ﬁs at 0
Seg 1 starts at 0+.2
Seg 2 starts at 0+.2+.3

Seg 3 starts at 0+.2+.3+.4

The while loop: 4 loopy questions. Allows us to focus on one
thing at a time and thus separate our concerns.

/I Set ¢ to the number of ‘e’s in String s.

int n=s.length(); 1. How does it start? (what is

c=0: k=0: the initialization?)

/I inv:c =#. of *e’s in s[0..k-1 .
e of ‘e’s in s[! 2. When does it stop? (From

while (i < n) { the invariant and the falsity of
if (s.charAt(k) == ‘¢”) loop condition, deduce that
result holds.)
c=c+1;
k= ke 1: 3. (How) does it mak:':)
progress toward termination?
¥
/I ¢ = number of ‘e’s in s[0..n-1] 4. How does repetend keep

invariant true?

Suppose we are thinking of The four loopy questions
Th? W.hlle, loop: Second box helps us develop four loopy
initialization; P . . U
" questions for developing or understanding a
while (B) { loop:
repetend
¥ 1. How does loop start? Initialization

must truthify inv P.

We add the postcondition and

Understanding assertions about lists
012345678

vVIXYZX ACZZ Z This is a list of Characters

0 3 K 3 This is an assertion about v
p ; and k. It is true because
=C . all Z's k El chars of v[0..3] are greater
than ‘C’ and chars of v[6..8]
are ‘Z’s.
0 3 k 8
=C | ? all Z’s k Indicate
whether
0 k 8 each of
«[o] e
assertions
0 LS 8 is true or
=W (A all Z’s k false.

also show where the invariant 2. When does loop stop?
must be true: Atend, Pand !B are true, and these must
initialization; imply R. Find !B that satisfies P && !B
// invariant: P =>R.
while (B) { 3. Make progress toward termination?
/I { Pand B} Put something in repetend to ensure this.
repetend . .
4. How to keep invariant true? Put
II{P} L h
) something in repetend to ensure this.
// {Pand !B}
/I { ResultR } 7
Appendix examples: Develop loop to store in x the sum of 1..100.
We’ll keep this definition of x and k true:
x = sum of 1..k-1
1. How should the loop start? Make range 1..k-1
Four loopy
empty: k=1; x=0; .
questions
2. When can loop stop? What condition lets us
know that x has desired result? When k == 101
3. How can repetend make progress toward termination? k= k+1;
4. How do we keep def of x and k true? x=x+k;
k=1; x=0;
// invariant: x = sum of 1..(k—1)
while (k !=101) {
x= x +k;
k=k+1;
¥
// { x =sum of 1..100 } 9

Roach infestation

= number of weeks it takes roaches to fill the apartment --see p 244 of text*/

public static int roaches() {

double roachVol=.001; // Space one roach takes
double aptVol= 20%20%#8; // Apartment volume
double growthRate= 1.25; // Population growth rate per week

int w=0; // number of weeks
int pop=100; // roach population after w weeks

// inv: pop = roach population after w weeks AND
I/ before week w, volume of the roaches < aptVol
while (aptVol > pop * roachVol) {
pop= (int) (pop * growthRate);
w=w+1;
¥

return w;

Tterative version of logarithmic algorithm to calculate b**c
(we’ve seen a recursive version before).

/** set z to b**c, given ¢ = 0 */
int x=b; int y=
/l'invariant: z * x**y =b**c and0<y=<c
while (y !=0) {

if (y % 2==0)

{x=x*xy=y/2; }

else{z=z*x;y=y—1;}
}
/I {z=b**c}

Calculate quotient and remainder when dividing x by y
x/y=q+rly 21/4=4+ 3/4

Property: x=q*y +r and O<r<y

/#* Set q to quotient and r to remainder.
Note: x >=0and y >0 */
int g=0; int r=x;
/linvariant: x=q*y+r andO=<r
while (r>=y) {
r=r-y;
q=q+1;
i
//{x=q*y+r and O<r<y}

