CS1110 10 March 2009

 While loopsReading: today: Ch. 7 and ProgramLive sections.
For next time: Ch. 8.1-8.3

Prelim in two days: Th 7:30-9pm Uris Aud. (G01)

 A5 due in one day: Wed 11:59pmTwo handouts for today; keep them both out.

Canonical while loops	
```// simulate for (int \(\mathrm{k}=\mathrm{b} ; \mathrm{k}<=\mathrm{c} ; \mathrm{k}=\mathrm{k}+1\) ) int \(\mathrm{k}=\mathrm{b}\); while ( \(\mathrm{k}<=\mathrm{c}\) ) \{ Process k; \(\mathrm{k}=\mathrm{k}+1\); \}```	
// process a sequence of input not of fixed size <initialization>;   while (<still input left>) \{   Process next piece of input;   make ready for the next piece of input; \}	
	3

// process a sequence of input not of fixed size <initialization>;
while (<still input left>) \{
Process next piece of input;
make ready for the next piece of input;
\}

A weighted die - extremely useful for scientific simulations
double $r=$ Math.random() draws r uniformly at random from $[0,1)$.
Problem: use this to produce an int in 0..n-1 given (non-zero, correct) probs $\operatorname{Pr}(\mathrm{i})$ for i in $0 . . \mathrm{n}-1$.
Idea: the $\operatorname{Pr}(\mathrm{i})$ divide $[0,1)$ into segments proportional to $\operatorname{Pr}(\mathrm{i})$
So, loop through the segments to find the one containing r.
$\operatorname{Pr}(0)=.2 \quad \operatorname{Pr}(1)=.3 \quad \operatorname{Pr}(2)=.1 \quad \operatorname{Pr}(3)=.4$

Seg 0 starts at 0
Seg 1 starts at $0+.2$
Seg 2 starts at $0+.2+.3$
Seg 3 starts at $0+.2+.3+.4$

Beyond ranges of integers: the while loop
while (<condition>) \{
sequence of declarations
and statements
<condition>: a boolean expression. <repetend>: sequence of statements
\}


In comparison to for-loops: we get a broader notion of "there's still stuff to do" (not tied to integer ranges), but we must ensure that "condition" stops holding (since there's no explicit increment).


The while loop: 4 loopy questions. Allows us to focus on one thing at a time and thus separate our concerns.
// Set c to the number of 'e's in String s.

$\begin{aligned} & \text { int } \mathrm{n}=\mathrm{s} \text {.length(); } \\ & \mathrm{c}=0 ; \mathrm{k}=0 ; \end{aligned}$	1. How does it start? (what is the initialization?)
// inv: $\mathrm{c}=$ \#. of 'e's in s[0..k-1]	2. When does it stop? (From
while ( $\mathrm{k}<\mathrm{n}$ ) \{	the invariant and the falsity of
if $\left(\mathrm{s} . \operatorname{charAt}(\mathrm{k})={ }^{\text {' }} \mathrm{e}\right.$ ')	loop condition, deduce that result holds.)
$\mathrm{k}=\mathrm{k}+1$;	3. (How) does it make progress toward termination?
\}	
$/ / \mathrm{c}=$ number of 'e's in $\mathrm{s}[0 . . \mathrm{n}-1]$	4. How does repetend keep invariant true?




Appendix examples: Develop loop to store in x the sum of $\mathbf{1 . . 1 0 0}$.
We'll keep this definition of x and k true:

$$
x=\text { sum of } 1 . . k-1
$$

1. How should the loop start? Make range $1 . . \mathrm{k}-1$ empty: $k=1 ; \mathbf{x}=\mathbf{0}$;
2. When can loop stop? What condition lets us
know that x has desired result? When $\mathrm{k}==\mathbf{1 0 1}$
3. How can repetend make progress toward termination? $k=k+1$;
4. How do we keep def of $x$ and $k$ true? $x=x+k$
$\mathrm{k}=1 ; \mathrm{x}=0$;
// invariant: $\mathrm{x}=$ sum of $1 . .(\mathrm{k}-1)$
while ( $k!=101$ ) \{
$\mathrm{x}=\mathrm{x}+\mathrm{k}$;
$\mathrm{k}=\mathrm{k}+1$;
\}
$\{x=$ sum of $1 . .100\}$


Calculate quotient and remainder when dividing $\mathbf{x}$ by $\mathbf{y}$

$$
\mathbf{x} / \mathbf{y}=q+r / \mathbf{y}
$$

$$
21 / 4=4+3 / 4
$$

Property: $x=q * y+r$ and $0 \leq r<y$
/** Set q to quotient and r to remainder.
Note: $\mathrm{x}>=0$ and $\mathrm{y}>0$ *
int $\mathrm{q}=0$; int $\mathrm{r}=\mathrm{x}$;
// invariant: $x=q * y+r$ and $0 \leq r$
while ( $\mathrm{r}>=\mathrm{y}$ ) \{
$r=r-y ;$
$\mathrm{q}=\mathrm{q}+1$;
\}
// $\{\mathrm{x}=\mathrm{q} * \mathrm{y}+\mathrm{r}$ and $0 \leq \mathrm{r}<\mathrm{y}\}$

