
1

1

CS1110 10 March 2009 �
While loops

Reading: today: Ch. 7 and ProgramLive sections.

For next time: Ch. 8.1-8.3

Prelim in two days: Th 7:30-9pm Uris Aud. (G01)

A5 due in one day: Wed 11:59pm

Two handouts for today; keep them both out.

2

Beyond ranges of integers: the while loop

while (<condition>) {

 sequence of declarations

 and statements

}

<condition>: a boolean expression.

<repetend>: sequence of statements.

In comparison to for-loops: we get a broader notion of “there’s still
stuff to do” (not tied to integer ranges), but we must ensure that
“condition” stops holding (since there’s no explicit increment).

condition
 repetend

false

true

3

Canonical while loops

// simulate for (int k= b; k <= c; k= k+1)

int k= b;

while (k <= c) {

 Process k;

 k= k+1;

}

// process a sequence of input not of fixed size

<initialization>;

while (<still input left>) {

 Process next piece of input;

 make ready for the next piece of input;

}

4

Interesting while loops (why are the invariants missing?)

// open q. in mathematics

public static boolean collatz(int n) {

 while (n != 1) {

if (n%2 == 0) {

n= n/2;

}

else {

n= 3*n +1;

}

 }

 return true;

}

// Von Neumann’s “fair coin” from

// unfair coin

// heads/tails is true/false

public static boolean fairFlip() {

 while (true) {

f1= new unfair flip;

f2= new unfair flip;

 if (f1 && !f2) {

return true;

 }

 if (!f1 && f2) {

return false;

 }

 }

}

5

A weighted die - extremely useful for scientific simulations

double r= Math.random() draws r uniformly at random from [0,1).

Problem: use this to produce an int in 0..n-1 given (non-zero, correct) probs

Pr(i) for i in 0..n-1.

Idea: the Pr(i) divide [0,1) into segments proportional to Pr(i).

 So, loop through the segments to find the one containing r.

6

// Set c to the number of ‘e’s in String s.

int n= s.length();

c= 0; k= 0;

// inv: c = #. of ‘e’s in s[0..k-1]

while (k < n) {

 if (s.charAt(k) == ‘e’)

 c= c + 1;

 k= k+ 1;

}

// c = number of ‘e’s in s[0..n-1]

The while loop: 4 loopy questions. Allows us to focus on one
thing at a time and thus separate our concerns.

1. How does it start? (what is
the initialization?)

2. When does it stop? (From
the invariant and the falsity of
loop condition, deduce that
result holds.)

3. (How) does it make
progress toward termination?

4. How does repetend keep
invariant true?

2

7

We add the postcondition and
also show where the invariant
must be true:

initialization;

// invariant: P

while (B) {

 // { P and B}

 repetend

 // { P }

}

// { P and !B }

// { Result R }

The four loopy questions
Suppose we are thinking of
this while loop:

initialization;

while (B) {

 repetend

}

Second box helps us develop four loopy
questions for developing or understanding a
loop:

1. How does loop start? Initialization
must truthify inv P.

2. When does loop stop?

At end, P and !B are true, and these must
imply R. Find !B that satisfies P && !B
=> R.

3. Make progress toward termination?
Put something in repetend to ensure this.

4. How to keep invariant true? Put
something in repetend to ensure this.

8

Understanding assertions about lists

This is an assertion about v
and k. It is true because
chars of v[0..3] are greater
than ‘C’ and chars of v[6..8]
are ‘Z’s.

0 1 2 3 4 5 6 7 8

X Y Z X A C Z Z Z
v
 This is a list of Characters

v ≥ C ? all Z’s k
 6

0 3 k 8

v ≥ C ? all Z’s k
 5

0 3 k 8

v ≥ C all Z’s k
 6

0 k 8

v ≥ W A C all Z’s k
 4

0 k 8

Indicate
whether
each of
these 3

assertions
is true or

false.

9

Appendix examples: Develop loop to store in x the sum of 1..100.

1. How should the loop start? Make range 1..k–1�
empty: k= 1; x= 0;

We’ll keep this definition of x and k true: �
 x = sum of 1..k–1

2. When can loop stop? What condition lets us �
know that x has desired result? When k == 101

3. How can repetend make progress toward termination? k= k+1;

4. How do we keep def of x and k true? x= x + k;

Four loopy
questions

k= 1; x= 0;

// invariant: x = sum of 1..(k–1)

while (k != 101) {

 x= x + k;

 k= k + 1;

}

// { x = sum of 1..100 }
 10

Roach infestation

/** = number of weeks it takes roaches to fill the apartment --see p 244 of text*/

public static int roaches() {

 double roachVol= .001; // Space one roach takes

 double aptVol= 20*20*8; // Apartment volume

 double growthRate= 1.25; // Population growth rate per week

 int w= 0; // number of weeks

 int pop= 100; // roach population after w weeks

 // inv: pop = roach population after w weeks AND

 // before week w, volume of the roaches < aptVol

 while (aptVol > pop * roachVol) {

 pop= (int) (pop * growthRate);

 w= w + 1;

 }

 return w;

 }

11

Iterative version of logarithmic algorithm to calculate b**c

(we’ve seen a recursive version before).

/** set z to b**c, given c ≥ 0 */

int x= b; int y= c; int z= 1;

// invariant: z * x**y = b**c and 0 ≤ y ≤ c

while (y != 0) {

 if (y % 2 == 0)

 { x= x * x; y= y/2; }

 else { z= z * x; y= y – 1; }

}

// { z = b**c }

12

Calculate quotient and remainder when dividing x by y

 x/y = q + r/y 21/4= 4 + 3/4

Property: x = q * y + r and 0 ≤ r < y

/** Set q to quotient and r to remainder.�
 Note: x >= 0 and y > 0 */

int q= 0; int r= x;

// invariant: x = q * y + r and 0 ≤ r

while (r >= y) {

 r= r – y;

 q= q + 1;

}

// { x = q * y + r and 0 ≤ r < y }

