
1

1

CS1110 5 March 2009 �

1.  Prelim 2 next Thursday evening, 12 March, 7:30PM, Uris Auditorium.

 For-loops are not on this prelim.

Conflict? Email Maria Witlox, mwitlox@cs.cornell.edu, by this evening.

 One handout is the prelim study guide.

 Review session 1-3pm Sunday March 8 in Phillips 101.

2. Please complete an online questionnaire concerning your TA.

http://www.engineering.cornell.edu/TAEval/menu.cfm

This is a midterm evaluation. It is important because your constructive
comments are used to help the TA improve, which may help you in this course.

3. Assignment 5 “due” Sunday (although actually due Wed. March 11)

Read: Sec. 2.3.8 and chapter 7 on loops. �
The lectures on the ProgramLive CD can be a big help.

2

Assertions �

Assertions are true-false statements (comments) asserting your
beliefs about (the current state of) your program.

 // x is the sum of 1..n <- asserts a specific relationship

 between x and n

Assertions help prevent bugs by helping you keep track of what
you’re doing…

… and they help track down bugs by making it easier to check
belief/code mismatches.

Assertions can help with loop bugs: initialization errors,
termination errors, and processing errors.

3

Precondition: assertion placed before a segment�
Postcondition: assertion placed after a segment�

// x = sum of 1..n-1

x= x + n;

n= n + 1;

// x = sum of 1..n-1

precondition

postcondition

1 2 3 4 5 6 7 8

x contains the sum of these (6)

n

n
1 2 3 4 5 6 7 8

x contains the sum of these (10)

4

Solving a problem�

// x = sum of 1..n

n= n + 1;

// x = sum of 1..n

precondition

postcondition

What statement do you put here
so that segment is correct? (if
precondition is true, execution
of segment should make
postcondition true.)

x= x + n+1;

1 … i-2 i-1 i i+1 i+2…

x contains the sum of these

(but we only know “i” through variable n)

n
@ precondition:

5

Solving a problem�

// x = sum of 1..n-1

n= n + 1;

// x = sum of 1..n-1

precondition

postcondition

What statement do you put here
so that segment is correct? (if
precondition is true, execution
of segment should make
postcondition true.)

x= x + n;

1 … i-2 i-1 i i+1 i+2…

x contains the sum of these

(but we only know “i” through variable n)

n
@ precondition:

6

Invariants: another type of assertion

for (int i= 2; i <= 4; i= i +1) {

 x= x + i*i;

}

i= 2;

i <= 4

i= i +1;

true

false

x= x + i*i;

// invariant

An invariant is an assertion about the variables that is true before and
after each iteration (execution of the repetend).

2

7

for (int k= a; k <= b; k= k + 1) {

 Process integer k;

}

// post: the integers in a..b have been processed

// Process integers in a..b
 Command to do something

equivalent post-condition

// inv: the integers in a..k-1 have been processed

8

Methodology for developing a for-loop

1.  Recognize that a range of integers b..c has to be processed

2.  Write the command and equivalent postcondition.

 // Process b..c

 // Postcondition: range b..c has been processed

3. Write the basic part of the for-loop.

for (int k= b; k <= c; k= k+1) {

 // Process k

}

4. Write loop invariant.

// Invariant: range b..k-1 has been processed

5.  Figure out any initialization.

Initialize variables (if necessary) to make invariant true.

6. Implement the repetend (Process k).

9

Finding an invariant

// Store in double variable v the sum

// 1/1 + 1/2 + 1/3 + 1/4 + 1/5 + … + 1/n

for (int k= 1; k <= n; k= k +1) {

 Process k;

}

// v =1/1 + 1/2 + … + 1/n

v= 0;

// invariant: v = sum of 1/i for i in 1..k-1

Command to do
something and

equivalent
postcondition

What is the invariant?
 1 2 3 … k-1 k k+1 … n

10

Finding an invariant

for (int k= 0; k < s.length(); k= k +1) {

 Process k;

}

// x = no. of adjacent equal pairs in s[0..s.length()-1]

What is the invariant?

A.  x = no. adj. equal pairs in s[1..k]

B.  x = no. adj. equal pairs in s[0..k]

C.  x = no. adj. equal pairs in s[1..k–1]

D.  x = no. adj. equal pairs in s[0..k–1]

// invariant:

for s = ‘ebeee’, x = 2.

k: next integer to process.�
Which ones have been�
processed?

A.  0..k C. a..k

B.  0..k–1 D. a..k–1

x = no. of adjacent equal pairs in s[0..k-1]

// set x to no. of adjacent equal pairs in s[0..s.length()-1]
 Command
to do

something
and

equivalent
post-

condition

11

// { Vector of Integers v has > 0 items }

// Set m to maximum Integer in v

// inv:

m= ??;

for (int k= ??; k < v.size(); k= k + 1) {

 // Process k;

}

// m = largest Integer in v[0..v.size()–1]

m is largest Integer in v[0..k–1]

Although this invariant is “typical”, the “typical” initialization
“k= 0; m= v.get(0);” isn’t appropriate:

An empty set (of Integers) has no maximum. Therefore,

be sure that 0..k–1 is not empty. Therefore, start with k = 1.

A warning

