
1

1

.

.

.

.

.

.

.

.

while there is room
 A draws or ;
 B draws or ;

A wants to get a solid closed curve.
B wants to stop A from getting a solid
closed curve.
Who can win? What strategy to use?

.

.

.

.

.

.

.

Board can be any size: m by n
dots, with m > 0, n > 0

A won the game to the right
because there is a solid closed
curve.

A game
A and B
alternate

moves

2

CS1110 24 Feb 2008�
More on Recursion

We develop recursive functions and�
look at execution of recursive functions

Study Sect 15.1, p. 415. Watch activity 15-2.1 on
the CD. In DrJava, write and test as many of the
self-review exercises as you can (disregard those
that deal with arrays).

Next time:
Casting about.

Look at Secs
4.2 and 4.3 in

text

3

Executing
recursive
function

calls.

/** = non-negative n, with commas every 3 digits �
 e.g. commafy(5341267) = “5,341,267” */
public static String commafy(int n) {
 1: if (n < 1000) return “” + n;
 // n >= 1000
 2: return commafy(n/1000) + “,” + to3(n%1000);
}

/** = p with at least 3 chars */
public static String to3(int p) {
 if (p < 10) return “00” + p;
 if (p < 100) return “0” + p;
 return “” + p;
}

 n

commafy: 1 Demo

commafy(5341266 + 1)

4

Recursive functions

/** = a copy of s in which s[0..1] are swapped, s[2..3] are
swapped, s[3..4] are swapped, etc. */

public static String swapAdjacent(String s)

/** = b c. Precondition: c ≥ 0*/�
public static int exp(int b, int c)

Properties:

(1)   b c = b * b c-1

(2)   For c even

 b c = (b*b) c/2

e.g 3*3*3*3*3*3*3*3

 = (3*3)*(3*3)*(3*3)*(3*3)

2

5

Recursive functions

/** = b c. Precondition: c ≥ 0*/�
public static int exp(int b, int c) {
 if (c = 0)
 return 1;
 if (c is odd)
 return b * exp(b, c–1);
 // c is even and > 0
 return exp(b*b, c / 2);
}

c number of calls
0 1
1 2
2 2
4 3
8 4
16  5
32 6
2n n + 1

32768 is 215

so b32768 needs only 16 calls!

6

Binary arithmetic
Decimal Binary Octal Dec Binary
00 00 00 20 = 1 1
01 01 01 21 = 2 10
02 10 02 22 = 4 100
03 11 03 23 = 8 1000
04 100 04 24 = 16 10000
05 101 05 25 = 32 100000
06 110 06 26 = 64 1000000
07 111 07 215 = 32768 1000000000000000
08 1000 10
09 1001 11
10 1010 12

Test c odd: Test last bit = 1

Divide c by 2: Delete the last bit

Subtract 1 when odd: Change last bit from 1 to 0.

Exponentiation algorithm processes binary rep. of the exponent.

7

Hilbert’s space-filling curve

Hilbert(1):

Hilbert(2):

Hilbert(n):

H(n-1)�
left

As the size of each
line gets smaller and
smaller, in the limit,

this algorithm fills
every point in space.
Lines never overlap.

H(n-1)�
dwn

H(n-1)�
dwn

H(n-1)�
right

8

Hilbert’s space-filling curve

