A game

. while there is room Aand B
]_..J.--] L Adraws — or , ; alternate
B draws --- or I —

A wants to get a solid closed curve.

B wants to stop A from getting a solid
closed curve.

Who can win? What strategy to use?

Board can be any size: m by n o
dots, withm>0,n>0 i

A won the game to the right
because there is a solid closed

M

We develop recursive functions and
look at execution of recursive functions

CS1110 24 Feb 2008
More on Recursion

Study Sect 15.1, p. 415. Watch activity 15-2.1 on Next time:
the CD. In DrJava, write and test as many of the Casting about.
self-review exercises as you can (disregard those L s Ot

. 42and 43 i
that deal with arrays). o te::

Geometry test

3. Find x.

3cm

/#* = non-negative n, with commas every 3 digits Executing
e.g. commafy(5341267) = 5,341,267 */ recursive
public static String commafy(int n) { function
1:if (n < 1000) return “” + n; calls.

// n>= 1000
2: return commafy(n/1000) + “,)” + t03(n%1000);
}

/#% = p with at least 3 chars */ commafy(5341266 + 1) |
public static String to3(int p) {
if (p < 10) return “00” + p;
if (p < 100) return “0” + p;

return “” + p; commafy: 1 ‘ ‘ Demo

)
n[]

s

Recursive functions

/** = a copy of s in which s[0..1] are swapped, s[2..3] are
swapped, s[3..4] are swapped, etc. */

public static String swapAdjacent(String s)
Properties:

/#% = b €. Precondition: ¢ > 0%/ . w1l
public static int exp(int b, int ¢) MbT =b*b
(2) For ¢ even
b€ = (b*b) c/2
eg 3*3*3H3HIHIAIH3
= (3%3)*(3%3)*(3*3)*(3*3)

4

Recursive functions

/¥% = b €. Precondition: ¢ = 0%/
public static int exp(int b, int c¢) {

if c=0)
return 1;
if (c is odd)
return b * exp(b, c-1);
// ¢ is even and > 0
return exp(b*b, ¢/ 2);
¥

32768 is 215
0 b32768 peeds only 16 calls!

c number of calls
0 1

1 2

2 2

4 3

8 4

16 5

32 6

2" n+1

Decimal Binary Octal

00
01
02
03
04
05
06
07
08
09
10

00
01
10
11
100
101
110
111
1000
1001
1010

00
01
02
03
04
05
06
07
10
11
12

Binary arithmetic
Dec
20=1
21=2
22=4
25=8
24=16
25=32
20 =64
215 =32768

Binary

1

10

100

1000

10000

100000

1000000
1000000000000000

Test ¢ odd: Test last bit = 1

Divide ¢ by 2: Delete the last bit

Subtract 1 when odd: Change last bit from 1 to 0.

Exponentiation algorithm processes binary rep. of the exponent.

6

Hilbert’s space-filling curve

Hilbert(1): m
Hilbert(2):
H(n-1)| |H@-1)
. dwn dwn
Hilbert(n):
H(n-1)| | H@-1)
left right]

As the size of each
line gets smaller and
smaller, in the limit,
this algorithm fills
every point in space.
Lines never overlap.

Hilbert’s space-filling curve

]

