
1

1

CS1110 19 February. Recursion

Recursion: If you get the point, stop; otherwise, see Recursion.
Infinite recursion: See Infinite recursion.

Read: pp. 403-408 but SKIP sect. 15.1.2

Look in ProgramLive CD, page 15-3, for some
interesting recursive methods.

Download presented algorithms from the website

Recursive definition: A definition that is defined in terms of itself.

Recursive method: a method that calls itself (directly or indirectly).

Recursion is often a good alternative to iteration (loops), which we
cover later. Recursion is an important programming tool. Functional
languages have no loops —only recursion.

/** = the number of ‘e’s in s */
public String noe(String s) {
 if (s.length() == 0) {
 return 0;
 }
 // { s has at least one char }

}

2

Called the base case

Called the recursive case

Express the answer with the same
terminology as the specification,
but on a smaller scale:
number of ‘e’s in s = (s[0] = ‘e’ ? 1 : 0) +
 number of ‘e’s in s[1..]

return (s[0] = ‘e’ ? 1 : 0) + noe(s.substring(1));

Notation:
s[i] shorthand for

s.charAt[i].

s[i..] shorthand for
s.substring(i).

s
0 1 s.length()

3

Two issues in
coming to grips with recursion

1. How are recursive calls executed?

2. How do we understand a recursive method and how do we
create one?

We discussed the first issue earlier. If you execute a call on a
recursive method carefully, using our model of execution, you will
see that it works. Briefly, a new frame is created for each recursive
call. We do this in the next lecture

DON’T try to understand a recursive method by executing its
recursive calls! Use execution only to understand how it works.

4

Factorial:

Step 1: HAVE A PRECISE SPECIFICATION

// = number of ‘e’s in s
public static int noe(String s) {
 if (s.length() == 0) {

return 0; base case
 }
 // {s has at least one character} recursive case (has a recursive call)
 // return (s[0] = ‘e’ ? 1 : 0) + number of ‘e’s in s[1..];
 return (s[0] = ‘e’ ? 1 : 0) + noe(s.substring(1));
}

Step 2: Check the base case.
When s is the empty string, 0 is returned.
So the base case is handled correctly.

Understanding a recursive method

Notation:
s[i] shorthand for

s.charAt[i].

s[i..] shorthand for
s.substring(i).

5

s = “” base case
s has at least one character recursive case

Step 3: Recursive calls make progress toward termination.

// = number of ‘e’s in s
public static int noe(String s) {
 if (s.length() == 0) {

return 0; base case
 }
 // {s has at least one character} recursive case (has a recursive call)
 return (s[0] = ‘e’ ? 1 : 0) + noe(s.substring(1));
}

argument s[1..] is smaller than
parameter s, so there is progress

toward reaching base case 0

parameter s
argument s[1..]

Step 4: Recursive case is correct.

Understanding a recursive function

6

Creating a recursive method

Task: Write a method that removes blanks from a String.

0. Specification:

/** = s but with its blanks removed */
public static String deblank(String s)

1. Base case: the smallest String s is “”.

 if (s.length() == 0)
return s;

2. Other cases: String s has at least 1 character.
 return (s[0] == ‘ ’ ? “” : “”) + s[1..] with its blanks removed

precise spec!

Notation:
s[i] shorthand for

s.charAt[i].

s[i..] shorthand for
s.substring(i).

2

7

// = s but with its blanks removed
public static String deblank(String s) {
 if (s.length() == 0) return s;
 // {s is not empty}
 if (s[0] is a blank)

return s[1..] with its blanks removed
 // {s is not empty and s[0] is not a blank}
 return s[0] + (s[1..] with its blanks removed);
}

The tasks given by the two English, blue expressions are similar to the
task fulfilled by this function, but on a smaller String! Rewrite each as

 deblank(s[1..]) .

Creating a recursive method

Notation:
s[i] shorthand for

s.charAt[i].

s[i..] shorthand for
s.substring(i).

8

// = s but with its blanks removed
public static String deblank(String s) {
 if (s.length == 0)

return s;
 // {s is not empty}
 if (s.charAt(0) is a blank)

return deblank(s.substring(1));
 // {s is not empty and s[0] is not a blank}
 return s.charAt(0) +
 deblank(s.substring(1));
}

Check the four points:
0. Precise specification?
1. Base case: correct?
2. Recursive case: progress toward termination?
3. Recursive case: correct?

Creating a recursive method

9

Check palindrome-hood
A String with at least two characters is a palindrome if
(0) its first and last characters are equal, and
(1) chars between first & last form a palindrome:

 e.g. AMANAPLANACANALPANAMA

/** = “s is a palindrome” */
public static boolean isPal(String s) {
 if (s.length() <= 1)
 return true;

 // { s has at least two characters }
 return s.charAt(0) == s.charAt(s.length()-1) &&
 isPal(s.substring(1, s.length()-1));
 }

have to be the same

has to be a palindrome

10

A man, a plan, a caret, a ban, a myriad, a sum, a lac, a liar, a hoop, a pint, a catalpa, a gas, an
oil, a bird, a yell, a vat, a caw, a pax, a wag, a tax, a nay, a ram, a cap, a yam, a gay, a tsar, a
wall, a car, a luger, a ward, a bin, a woman, a vassal, a wolf, a tuna, a nit, a pall, a fret, a watt,
a bay, a daub, a tan, a cab, a datum, a gall, a hat, a fag, a zap, a say, a jaw, a lay, a wet, a
gallop, a tug, a trot, a trap, a tram, a torr, a caper, a top, a tonk, a toll, a ball, a fair, a sax, a
minim, a tenor, a bass, a passer, a capital, a rut, an amen, a ted, a cabal, a tang, a sun, an ass,
a maw, a sag, a jam, a dam, a sub, a salt, an axon, a sail, an ad, a wadi, a radian, a room, a
rood, a rip, a tad, a pariah, a revel, a reel, a reed, a pool, a plug, a pin, a peek, a parabola, a
dog, a pat, a cud, a nu, a fan, a pal, a rum, a nod, an eta, a lag, an eel, a batik, a mug, a mot, a
nap, a maxim, a mood, a leek, a grub, a gob, a gel, a drab, a citadel, a total, a cedar, a tap, a
gag, a rat, a manor, a bar, a gal, a cola, a pap, a yaw, a tab, a raj, a gab, a nag, a pagan, a bag,
a jar, a bat, a way, a papa, a local, a gar, a baron, a mat, a rag, a gap, a tar, a decal, a tot, a led,
a tic, a bard, a leg, a bog, a burg, a keel, a doom, a mix, a map, an atom, a gum, a kit, a
baleen, a gala, a ten, a don, a mural, a pan, a faun, a ducat, a pagoda, a lob, a rap, a keep, a
nip, a gulp, a loop, a deer, a leer, a lever, a hair, a pad, a tapir, a door, a moor, an aid, a raid, a
wad, an alias, an ox, an atlas, a bus, a madam, a jag, a saw, a mass, an anus, a gnat, a lab, a
cadet, an em, a natural, a tip, a caress, a pass, a baronet, a minimax, a sari, a fall, a ballot, a
knot, a pot, a rep, a carrot, a mart, a part, a tort, a gut, a poll, a gateway, a law, a jay, a sap, a
zag, a fat, a hall, a gamut, a dab, a can, a tabu, a day, a batt, a waterfall, a patina, a nut, a flow,
a lass, a van, a mow, a nib, a draw, a regular, a call, a war, a stay, a gam, a yap, a cam, a ray,
an ax, a tag, a wax, a paw, a cat, a valley, a drib, a lion, a saga, a plat, a catnip, a pooh, a rail,
a calamus, a dairyman, a bater, a canal ---Panama!

11

Tiling Elaine’s kitchen

Elaine has a 2n by 2n
kitchen. One square of it
is covered by a 1 by 1
refrigerator. Tile the
kitchen with these kinds
of tiles:

2n

2n

12

Tiling Elaine’s kitchen
/** tile a 2n by 2n kitchen. */ �
public static void tile(int n) {
 if ()

}

2n

2n

