
1

1

CS1110 10 February 2009
Inside-out rule; use of this and super
Developing methods (using String ops).
Read sec. 2.5 on stepwise refinement
Listen to PLive lectures 2.5.1–2.5.4.

Prelim: Thu 19 Feb, 7:30 to 9:00, Baker 200
Review: Sun 15 Feb, 1–3, Phillips 101

Reading for next
 lecture: the same

For today:
Turn in Assignment 2.
Pick up three handouts:
• Assignment 3, due next Monday. “Group” early on CMS
 and watch the course “Announcements” webpage.
• Prelim review notes
• Today’s slides

(Suggestion: get a 3-ring binder and a 3-hole punch. Take notes on 3-hole-punched looseleaf paper).
2

The inside-out rule (see p. 83)

Code in a construct can reference any of the names declared or defined
 in that construct, as well as names that appear in enclosing constructs.
 (If a name is declared twice, the closer one prevails.)

File drawer for class Virus

Virus
a0

name

getNameAndPop()
 {return name + virusPop;} Virus

a1

name

getNameAndPop()
 {return name + virusPop;}

virusPop

Remember frame boxes and figuring out variable references?

3

Method parameters participate in the inside-out rule: remember the frame.

setName(String n) {
 name= n;
}

Virus
a0

name

setName(String name) {
 name= name;
}

Wrong
a1

name

Parameter n would be
 found in the frame for
 the method call.

Parameter name “blocks”
 the reference to the
 field name.

4

A solution: this and super
Within an object, this refers to the name of the object itself.

File drawer for class Virus

virusPop

setName(String name) {
 this.name= name;
}

Virus
a0

name

setName(String name) {
 this.name= name;
}

Virus
a1

name

In folder a0, �
this refers to a0.

In folder a1, �
this refers to a1.

5

A solution: using this and super
Within a subclass object, super refers to the superclass.

toString() { … }

otherMethod { …
 … super.toString() …
}

Object
a1

Elephant

method equals()

method toString()
Because of the
 keyword super,
 this calls toString
 in the Object
 partition.

6

Strings are (important) objects that come with useful methods.
String s= "abc d";

 abc d
01234

Text pp. 175–181 discusses Strings
Look in CD ProgramLive
Look at API specs for String

s.length() is 5 (number of chars)
s.charAt(2) is 'c' (char at index 2)
s.substring(2,4) is "c " (NOT “c d”)
s.substring(2) is "c 4"
" bcd ".trim() is "bcd" (trim
 beginning and ending blanks)

DO NOT USE == TO TEST STRING EQUALITY!

s == t tests whether s and t contain the name of the same object, not
 whether the objects contain the same string.

Use s.equals(t)

Note the “index (number)
 from 0” scheme:

2

7

Developing a string function
/** Precondition: s contains a sequence of unsigned integers separated by
 commas (each possibly followed by blanks). There are
 no blanks or commas at the beginning and end of s.
 = s but with its first integer removed (remove also following comma,
 if there is one, and following blanks).
 E.g. s = "52, 0, 76385" Return "0, 76385"
 s = "000, 11" Return "11"
 s = "00" Return ""
*/
public static String removeInt(String s)

8

Developing a string function
/** Precondition: s contains a sequence of unsigned integers separated by
 commas (each possibly followed by blanks). There are
 no blanks or commas at the beginning and end of s.
 = s IF the first integer isn’t 0
 =s but with its first integer and delimiting comma and blanks removed if
 the first integer is originally 0
 E.g. s = "52, 0, 76385" Return s
 s = "000, 11" Change s to "11"
 s = "00" Change s to ""
*/
public static String removeZero(String s)

9

Principles and strategies
Principle: Write a method spec before you write the body.

Mañana Principle: Write the specification of a method and
 “stub” it in, so that it can be compiled and produces something
 that allows further development. Put off its complete
 development until later. (Mañana means tomorrow, or an
 indefinite time in the future.)

Compile often: Compiling often will help you catch syntax
 errors quickly and easily.

Intersperse program development with testing: The worst
 thing you can do is to write a complete program and then
 begin testing. Because if there is an error, you have no idea
 where it is and how to find it. However, if you test each
 method as completely as possible after writing it, then any
 errors should be localized to that method.

