
CS1110 Lab 13. Timing execution Spring 2009

Name _____________________ NetId __________

Introduction

The goal of this lab is to show you how to time execution of a program and, with this new
skill, to investigate the difference in execution time between linear search and binary search and
between selection sort and insertion sort. Have a blank sheet of paper ready to write on. Start a
new folder for the .java files for this program and download these files from the course web page
for labs: Sorting.java TestArrays.java

Step 1. Learn about class Date
Package java.util contains a class Date, which can be used to record the current time.

An instance of this class records a date in milliseconds (there are 1,000 milliseconds in a second)
since 1 January 1970 (Greenwich mean time). Since a day has 24 * 60 * 60 = 86400 minutes,
that's a lot of milliseconds since 1 January 1970! So, use type long to record such a number.

To see how this class is used, turn to method times in class TestArrays. The body includes
two statements:

// Store in timeStart a Date with the time at which the statement is executed.
Date timeStart= new Date();

// Store in timeEnd a Date with the time at which the statement is executed.
Date timeEnd= new Date();

The next set of statements prints the values of these times in two forms. First, using method
toString of class Date (applied automatically); second, as an integer, which is obtained us-
ing function getTime. So you can see how many milliseconds have elapsed since 1 January
1970 (divide by 1000 to get the seconds).

To see the results of execution of these statements, execute a call on procedure times. You'll
see the results in the Java console. Note that the two times are exactly the same (or differ by at
most 1). It takes very little time to allocate a new Date object and store its name in a variable.

Note that this determination of execution time is not exact, in that the computer is handling
many chores at the same time —various bookkeeping things, allocating memory, dealing with
the hard disk, communicating with the internet, etc.— and all this processing is included in the
execution time. Nevertheless, this determination of execution time is good enough for our pur-
poses of showing the difference between algorithms.

Class Date is deprecated (obsolescent, lessened in value, replaced by something better), but
it can still be used. The problem with Date is that it doesn't extend easily to international times.
It is fine for our use here. If compiling the program results in warnings about deprecated classes
and methods, you can turn the warning off using the Edit -> Preferences menu item.

Step 2. Experiment with searches
The first experiment to run compares linear search with binary search. Look at procedure

testSearches and its specification. It executes linear search m times on array b and then exe-
cutes binary search m times on b. Execute the call TestArrays.testSearches(10); and
see what is printed in the Interactions Pane (and Java console).

CS1110 Lab 13. Timing execution Spring 2009

The number 10 for m may be too small to see any results. It depends on how fast (or slow)
your machine is. Increase it to 50, to 100, etc. until it takes between 5 and 10 seconds for linear
search. When you get a reasonable number, write down m on your sheet of paper.

To get a non-zero reading for binary search, keep increasing the value of m. For this purpose,
you may want to fix the linear search experiment so that it always does linear search 0 times, so
you don't have to wait so long. How many times did binary search have to execute in order to get
an elapsed time of around 5 or ten seconds? Write down these facts. Isn't it interesting how fast
binary search really is compared to linear search?

Step 3. Experiment with insertion sort and selection sort
Study method testSorts and its spec. It creates an array of size 5000, and then:

(0) runs selection sort m times on array b, each time initializing the array to {0, -1, -2, -3, ...}.

(1) runs insertion sort m times on array b, each time initializing the array to {0, -1, -2, -3, ...}.

Execute a call on testSorts with argument 5. Try higher values, like 10, 20, 30, etc., until
it takes about 10-15 seconds to execute. Remember, we don't know how fast your computer is.

Write down on a piece of paper the value m and the times for each of the sorts.

Step 4. Experiment with sorting an already-ascending array
Look at method testSorts. In it, method fillbneg is used to fill array b with values.

There is also a method fillbpos, which sets the array to {0, 1, 2, 3, ...}. Change the method
call fillbneg(); (in two places) to fillbpos(); , so that both selection sort and insertion
sort will work on arrays that are already sorted and run the experiment again.

You will see that insertion sort takes a lot less time! Keep increasing m, the number of times
each sorting method is executed, until finally you have a nonzero number for the insertion-sort
time. Write down the results of the experiment on your sheet of paper.

Figure out WHY insertion sort is so quick when the array is already sorted. This requires
looking at the code of insertion sort and the method it calls and determining what happens if the
array is already sorted. Write your explanation on your sheet of paper.

Step 5. Experiment with insertion sort and quick sort
Study method testSorts2 and its spec. It creates an array of size 75,000, and then:

(0) runs selection sort m times on array b, each time initializing the array to {0, -1, -2, -3, ...}.

(1) runs quicksort sort m times on array b, each time initializing the array to {0, -1, -2, -3, ...}.

Execute a call on testSorts2 with argument 1 —that should be high enough. It may take 30
seconds to a minute to time selection sort. Remember, we don't know how fast your computer is.

Write down the value m and the times for each of the sorts. Remember, for an array of size n,
selection sort takes time proportional to n*n and quicksort, on average, takes time proportional
to n * log n.

