
CS1110 Lab 07. Abstract classes Spring 2009

Name ___________________ NetId __________________________

This lab introduces you to the concepts of an "abstract class" and "abstract method". The topic is covered
in Section 4.7 of the class text and on lesson page 4-5 of the ProgramLive CD. Your lab instructor will
present the concepts to you if you want (which are quite simple) —ask them. You will obtain a few Java
classes from the course website, load them into Java, and change one of the classes from a normal class to
an abstract class. You will be asked to look at the classes and modify them a bit. You will need a sheet of
paper to write information about this lab. Show it to your instructor when you have finished. Because you
probably don't have text with you, we summarize the material here.

This lab also gives you practice in reading Java programs and, in this context, modifying them to draw
some shapes in a Frame. You don't need to know much about how to draw things because you will do it
simply by reading specifications of procedures in order to figure out how to call the procedures.

Problem 1. In some situations, we don't want a programmer to instantiate (create an instance of) a class.
The class is there only to provide a superclass of other classes. But there is no way to prevent programmers
from instantiating the class.

Solution. Change the class to an abstract class, because abstract classes cannot be instantiated. To do this,
change the first line of the class, say class C, from

 public class C {
to
 public abstract class C {

Purpose of making a class abstract. Make a class abstract so that it cannot be instantiated (one cannot
create an instance of it).

Problem 2. In abstract class DemoShapes, to the right, method DrawShapes is defined
ONLY so that it can be overridden. We don't want programmers to call this method;
they should call only the overriding methods in the subclass. But we can't force them
to override the method, and if they don't, the one in DemoShapes will be called..

Solution. Change DrawShapes to an abstract method, because abstract methods must
be overridden. To do this, change DrawShapes as shown below. There are two
changes: (1) keyword abstract is inserted and (2) the method body is replaced by a
semicolon.

 public void DrawShapes(...) { ...}
to
 public abstract DrawShapes(...) ;

Purpose of making a method abstract. Make a method in an abstract class abstract so that it cannot be
called and must be overridden.

Step 1. Open some files in DrJava. Start a new directory on your hard drive.
Download these five files into the directory: DemoShapes.java Shape.java
 Parallelogram.java Rhombus.java Square.java. You can also obtain them by
opening the course web page in a browser and clicking "Labs" in the lefthand
column; this opens a page that has links to these files.

Open files DemoShapes and Shape in DrJava and compile. In the Interactions pane,

file:///Volumes/Work15A/CS1110Spring2009/handouts/labs/lab07/DemoShapes.java
file:///Volumes/Work15A/CS1110Spring2009/handouts/labs/lab07/Shape.java
file:///Volumes/Work15A/CS1110Spring2009/handouts/labs/lab07/Parallelogram.java
file:///Volumes/Work15A/CS1110Spring2009/handouts/labs/lab07/Rhombus.java
file:///Volumes/Work15A/CS1110Spring2009/handouts/labs/lab07/Square.java

create an instance of DemoShape:

d= new DemoShapes();

A figure like that on the right (above) should appear. The output in the Java console
is a description of seven shapes that are drawn in the window.

Step 2. Make class Shape abstract

(a) In file DemoShapes.java, place the following statement in method paint, just before the declaration
(and initialization) of variable h:

Shape s0= new Shape(5,5);

Compile the program. On your paper, write what this statement does.

(b) Open file Shape.java and place keyword abstract just before keyword class in the class definition,
so that the third line of the file looks like

public abstract class Shape {

You have made the class into an abstract class. Try compiling the program again. Do you get an error
message? Write down the error message and explain in a few words why it is an error. Now delete the
statement that you placed in file DemoShapes.java in part (a) and compile the program again. You should
no longer have an error message.

Step 3. Make method drawShape of class Shape abstract

In file Shape.java, change method drawShape to:

public abstract void drawShape(Graphics g);

Remember to replace the body {} by a semicolon. You have made this method into an abstract method.
Compile the program; it should still compile.

Open file Parallelogram.java and comment out method drawShape (put /* before the method and */
after the method). Try to compile the program. Do you get error messages? Write on your paper the error
message that deals with class Parallelogram. Write a few words explaining what the error is.

Remove the comment symbols, so that drawShapes is again defined in Parallelogram. Execute the
program again just to be sure that you removed them correctly.

Step 4 Add Arms. Class Shape is designed to be the root of all classes that draw a shape. We have the
following hierarchy: Object -> Shape -> Parallelogram -> Rhombus -> Square, because a square is a
rhombus with angle 90 degrees, a rhombus is a parallelogram all of whose sides are equal, and a
parallelogram is a shape.

The shape that appears when the program is executed looks almost like a person. It is drawn using methods
of instance g of class Graphics that is attached to the JFrame object that opens. The only methods you
need from Graphics are setColor and getColor. You will do most of your work in this step 4 using the
Shape classes.

You will give the person arms. All the changes you will make will be in class DemoShapes. Read through
method paint of DemoShapes.

First, comment out the code that produces the two black lines (in DemoShapes). Hint: look for where the

color is set to black.

Each arm is a green rectangle that is 60 pixels long and 20 pixels high. Its leaning factor (field d of class
Parallelogram) is 0, which means that it is a rectangle. The leaning factor is defined on Lesson page 4.4 of
the ProgramLive CD (see also the comment at the beginning of class Parallelogram), but you really don't
have to read about it. Later, when you get the program going with leaning factor 0, you can try a different
leaning factor, say 15, and see what it looks like.

The arms should be attached at the top right and top left of the square that makes up the body. The tops of
the arms should be parallel to the top line of the square.

In writing the code that draws these rectangles, use the variables that are defined at the top of method
paint. Also, use variables to contain all the constants that you need, as we did in method paint. You may
have to move the whole figure to the right (by changing the value of variable x) so that you can see the
whole picture. You must use class Parallelogram; you may not use method drawRect in class Graphics.

Hint: to figure out the coordinates for the arms, look at the positioning of the green square.

When you are finished, write on your paper the sequence of statements that you added to method paint.

