

Info

- My name: Bruno Abrahao
- We have two other TA's in the room to help you individually
- Beibei Zhu
- Suyong Zhao
- Ask them questions at any time
- This set of slides will be posted in the course Website!

Review session

- Let's make this interactive
- Ask questions
- All questions are smart
- More fun
- We'll do exercises
- Have pen and paper ready!

What's in the exam?

Question 3 (20 points) a) Consider the program segment below. Draw all variables (with their respective values) and objects created by execution of this program segment.

- The material of the previous Prelims
- Arrays
- For loops
- While loops
- Algorithms

What's in the exam?

- The material of the previous Prelims
- Arrays
- For loops
- While loops

We will talk about the new stuff today!

- Algorithms
int[][] C= new int[3][2];
int[] $z=$ new int[] $\{3,2,1\}$;
String[] $s=$ new String[2];
$\mathrm{z}=$ new int[2];
(b) Give an expression to reference the second element of z.
(c) What is the result of the expression s [1]. length () after execution of the code above?
(d) Give the declaration of a single variable v to store the values 1 and " Hi " somewhere at the same time.

Array: length

Array length: an instance field of the array. This is why we write x .length, not x .length()

Length field is final: cannot be changed.
Length remains the same once the array has been created.

The length is not part of the array type
The type is int[]
An array variable can be assigned arrays of different lengths.
int[] x ;
$x=$ new $\operatorname{int}[4]$;
$\mathrm{x}=$ new $\operatorname{int[32];}$

int[] x ;	x null $^{\text {int[] }}$	Arrays		
			a0	
$\mathrm{x}=$ new int[4];	Create array object of length 4 , store its name in x	0	0	
			0	
		1	0	
	$\mathrm{xa0}$ int[]		0	
$x[2]=5$;	Assign 5 to array element 2 and -4 to array element 0	3	a0	
$x[0]=-4 ;$			-4	
			0	
	$x[2]$ is a reference to element number 2 of array x	1	5	
			0	
$\begin{aligned} & \text { int } k=3 ; \\ & x[k]=2^{*} x[0] ; \\ & x[k-1]=6 ; \end{aligned}$	Assign $2^{*} x[0]$, i.e. -8 , to $x[3]$ Assign 6 to $\times[2]$		a0	
		3	-4	
			0	
		1	6	
			-8	9

Array initializers		
```Instead of int[] c= new int[5]; c[0]= 5; c[1]= 4; c[2]= 7; c[3]= 6; c[4]= 5;```		a0
		5
		4
		7
Use an array initializer: int[] c= new int[] \{5, 4, 7, 6, 5\};		6
		5
array initializer: values must have the same type, in this case, int. Length of the array is the number of values in the list		

Question 2 (10 points). a) Write a single statement that declares and initializes a two-dimensional int array b to look like the table below.

1	3	6	10
2	5	9	13
4	8	12	15
7	11	14	16



$$
\begin{aligned}
& \text { Multi-dimensional arrays initializer } \\
& \qquad \begin{array}{c}
\text { d } \begin{array}{llll}
0 & 1 & 2 & 3
\end{array} \\
\begin{array}{lllll}
5 & 4 & 7 & 3 \\
4 & 8 & 9 & 7 \\
5 & 1 & 2 & 3 \\
4 & 1 & 2 & 9 \\
6 & 7 & 8 & 0
\end{array} \\
\hline
\end{array} \\
& \begin{array}{l}
\text { Using an array initializer: } \\
\text { int[][] d= new int }[][\{\{\{5,4,7,3\},\{4,8,9,7\},\{5,1,2,3\},\{4,1,2,9\},\{6,7,8,0\}\} ;
\end{array}
\end{aligned}
$$

Question 3 (20 points) a) Consider the program segment below. Draw all variables (with their respective values) and objects created by execution of this program segment.

Question 2 (10 points). Write a single statement that declares and initializes a two-dimensional int array b to look like the table below.
int[][] $C=$ new int[3][2] ;
int[] $z=$ new int[] $\{3,2,1\}$;
String[] $s=$ new String[2];
$\mathrm{z}=$ new int[2]
b) Give an expression to reference the second element of $\mathbf{z}$.
c) What is the result of the expression s[1]. length () after the execution of the code above?
d) Give the declaration of a single variable $v$ to store the values 1 and "Hi" at the same time.

1	3	6	10
2	5	9	13
4	8	12	15
7	11	14	16

## What's in the exam?

- The material of the previous Prelims
- Arrays
- For loops
- While loops
- Algorithms


Note on ranges.	
2..5 contains $2,3,4,5$. It contains $5+1-2=4$ values	
2..4 contains $2,3,4$. It contains $4+1-2=4$ values	
2..3 contains 2, 3. It contains $3+1-2=2$ values	
$2 . .2$ contains 2 . It contains $2+1-2=1$ values	
The number of values in m..n is $n+1-m$.	
2..1 contains . It contains $1+1-2=0$ values	
3..1 contains . This is an invalid range!	
In the notation $m$..n, we require always, without saying it, that $\mathbf{m}<=\mathbf{n + 1}$.	
	19

## Invariants

- Assertions: true-false statements (comments) asserting your beliefs about (the current state of) your program.
$/ / \mathrm{x}$ is the sum of $1 . . \mathrm{n}$ <- asserts a specific relationship between x and n
- Invariant: an assertion about the variables that is true before and after each iteration (execution of the repetend).


```
Spring'06 - Question 3 (20 points). Arrays and loops
A tridiagonal array m}\mathrm{ is a square array in which, in each row k (0 sk<
m.length), all elements are 0 except perhaps elements m[k][k-1],m[k][k]
and m[k][k+1] (if they exist).The following matrix is tridiagonal (* is any
integer)
* * 0 0 0 0 0
* * * 0 0 0 0
0 * * * 0 0 0
0 0 * * * 0 0
0 0 * * * 0
0 0 0 * * *
00 0 0 0 * *
Complete method isTridiagonal, whose specification is given below.
** = "array m is tridiagonal"
Precondition: m is square (number of rows = number of
columns). */
public static boolean isTridiagonal(int[][] m) {
```

public static boolean isTridiagonal(int[][] m) \{
// inv: rows 0..i-1 have tridiagonal property
for (int i= 0; i != m.length; i= i+1)
// return false if row $k$ contains a non-zero
// where it should have a 0
for (int $j=0 ; j$ ! $=\mathrm{m}$. length; $j=j+1$ ) \{
if (j ! = i-1 \&\& j ! = i \&\& j ! = i+1 \&\&
m[i][j] != 0) \{
return false;
\}
\}
\}
return true
\}

## What's in the exam?

- The material of the previous Prelims
- Arrays
- For loops
- While loops
- Algorithms


The while loop: 4 loopy questions. Allows us to focus on one thing at a time and thus separate our concerns.	
// Set c to the number of 'e's in String s. $\mathrm{k}=0 ; \mathrm{c}=0 \text {; }$	1. How does it start? ((how) does init. make inv true?)
// inv: c = \#. of 'e's in s[0..k-1]   while ( $k$ < s.length()) \{	2. When does it stop? (From the invariant and the falsity of loop condition, deduce that result holds.)
$\begin{aligned} & \text { if }(s . \operatorname{charAt}(k)==\text { ' } e \text { ') } \\ & \quad c=c+1 ; \\ & k=k+1 ; \end{aligned}$	3. (How) does it make progress toward termination?
\}   // c = number of 'e's in s[0..n-1]	4. How does repetend keep invariant true?



Example of an assertion about an array b. It asserts that:

1. $b[0 . . k-1]$ is sorted (i.e. its values are in ascending order)
. Everything in $b[0 . . \mathrm{k}-1]$ is $\leq$ everything in $b[k$. .b.length -1$]$


Given the index $h$ of the First element of a segment and
the index k of the element that Follows the segment, the number of values in the segment is $k-h$.
$b[h . . k-1]$ has $k-h$ elements in it.

$(h+1)-h=1$

## Understanding assertions about lists

$v \begin{array}{lllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \mathrm{X} & \mathrm{Y} & \mathrm{Z} & \mathrm{X} & \mathrm{A} & \mathrm{C} & \mathrm{Z} & \mathrm{Z} & \mathrm{Z}\end{array} \quad$ This is a list of Characters



## Common mistake \#1

$$
\text { // Where is } k ?
$$




> 1. How should the loop start? (how to make the invariant true?)
> 2. When can loop stop? (when is the post condition true?)
> 3. How can repetend make progress toward termination?
> 4. How does the repetend keep the invariant true?


// invariant: b	0	k	b.length
	$?$	$x=$ length of longest segment of equal values in this part of $b$	
// Postcondition: b	0		b.lengh
	$x=$ length of longest segment of equal values in this part ofb		
```x= 0; k= b.length; while (0 != k) { if (b[k-1] == b[k+x-1]){ x= x + 1; } k= k - 1 }```			
${ }^{33}$			

Common mistake \#2

```
// Returning from nowhere
x=0;
k= b.length;
while (0 != k) {
        if (b[k-1] == b[k+x-1]){
                x= x + 1;
        }
        k=k-1
}
return x;
```


Common mistake \#3

```
// Bad style: unnecessary variables
    x= 0;
    max= 0;
    k= b.length;
    while (0 != k) {
        if (b[k-1] == b[k+max-1]) {
            max= max + 1;
        }
        k= k - 1
        x}=\operatorname{max}
}
```


What's in the exam?

- The material of the previous Prelims
- Arrays
- For loops
- While loops
- Algorithms

Algorithms

- Binary Search
- Dutch National Flag
- Insertion Sort
- Selection Sort
- Partition

Algorithms

- Binary Search
- Dutch National Flag \qquad See Quiz on April 3
- Insertion Sort
- Selection Sort
- Partition

Common mistake \#4

- Memorizing the algorithm without understanding it
- Unable to reproduce the algorithms if there is a small change in the specification

Result is the ability to memorize, not the ability to solve problem!

Algorithms

- Binary Search
- Dutch National Flag
- Insertion Sort
- Selection Sort
- Partition

Common mistake \#5

Binary Search: Given a sorted (in ascending order) array segment $b[h . k-1]$ and a value x. Store in p an integer that satisfies: R : $b[h . . p]<=x<b[p+1 . . k-1]$

Algorithms
- Binary Search
- Dutch National Flag
- Insertion Sort
- Selection Sort
- Partition

Question 4 (20 points). (a) Draw the invariants of the loops that perform Insertion and Selection sort algorithms.
(b) Write the loop for Selection Sort. The repetend should be written in English

Algorithms

- Binary Search
- Dutch National Flag
- Insertion Sort
- Selection Sort
- Partition

Selection Sort

Add property to invariant: first segment contains smaller values.
selection sort
invariant: b \qquad
for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}=\mathrm{i}+1$) $\{$
 int $j=$ index of \min of $b[i . . n-1]$; Swap b[j] and b[i]

Algorithms

- Binary Search
- Dutch National Flag
- Insertion Sort
- Selection Sort
- Partition

Summary

- Today we discussed
- Arrays
- For loops
- While loops
- Algorithms

