
4/9/09

1

CS 1110 
Prelim III: Review Session 

1 

Info 

•  My name: Bruno Abrahao 

– We have two other TA’s in the room to help you 
individually 

• Beibei Zhu 
•  Suyong Zhao 

– Ask them quesGons at any Gme 
– This set of slides will be posted in the course 
Website! 

2 

Review session 

•  Let’s make this interacGve 
– Ask quesGons  
– All quesGons are smart 
– More fun 

•  We’ll do exercises 
– Have pen and paper ready! 

3 

What’s in the exam? 

•  The material of the previous Prelims 
•  Arrays 
•  For loops 
•  While loops 

•  Algorithms 

4 

We will talk 
about the new 
stuff today! 

What’s in the exam? 

•  The material of the previous Prelims 
•  Arrays 
•  For loops 
•  While loops 

•  Algorithms 

5  6 

Question 3 (20 points) a) Consider the program segment below.
Draw all variables (with their respective values) and objects created
by execution of this program segment.

int[][] c= new int[3][2];
int[] z= new int[] {3, 2, 1};
String[] s= new String[2];
z= new int[2];

(b) Give an expression to reference the second element of z.

(c) What is the result of the expression s[1].length() after
execution of the code above?

(d) Give the declaration of a single variable v to store the values 1
and “Hi” somewhere at the same time.

4/9/09

2

The type of the array:
 int[]
 String[]
 Integer[]

7 

Array: object

Can hold a fixed number of values of the same type.

0

0

0

0

a0

Basic form of a declaration: int[] x
Does not create array, it only declares x. x’s initial
value is null.

0

1

2

3

Elements of array are numbered: 0, 1, 2, …, x.length–1;

x null
int[]

Array creation: new int[4]
Assignement: int[] t= new int[4] t a0

int[]

8 

4

Array: length

Array length: an instance field of the array.
This is why we write x.length, not x.length()

5

7

4

-2

a0

0

1

2

3

Length field is final: cannot be changed.
Length remains the same once the array has been
created.

length

The length is not part of the array type.
The type is int[]
An array variable can be assigned arrays of different lengths.

int[] x;
x= new int[4];
x= new int[32];

9 

Arrays int[] x ; x null
int[]

0
0
0
0

a0
x= new int[4]; 0

1

2

3

Create array object of length
4, store its name in x

x a0
int[]

-4
0
6
-8

a0
0

1

2

Assign 2*x[0], i.e. -8, to x[3]
Assign 6 to x[2]

int k= 3;
x[k]= 2* x[0];
x[k-1]= 6;

x[2]= 5;
x[0]= -4; -4

0
5
0

a0
0

1

2

3

Assign 5 to array element 2 and
-4 to array element 0

x[2] is a reference to element
number 2 of array x

10 

Difference between Vector and array

Declaration: int[] a; Vector v;

Elements of a: int values Elements of v: any Objects

Array always has n elements Number of elements can change

Creation: a= new int[n]; v= new Vector();

Reference: a[e] v.get(e)

Change element: a[e]= e1; v.set(e, e1);

Array locations a[0], a[1], … in
successive locations in memory.
Access takes same time no
matter which one you reference.

Elements all the same type (a
primitive type or class type)

Can’t tell how Vectors are stored in
memory. Referencing and changing
elements done through method
calls

Elements of any Object type (but
not a primitive type). Casting may
be necessary when an element is
retrieved.

11 

Array initializers

Instead of
 int[] c= new int[5];
 c[0]= 5; c[1]= 4; c[2]= 7; c[3]= 6; c[4]= 5;

Use an array initializer:
 int[] c= new int[] {5, 4, 7, 6, 5};

5

4

7

6

5

a0

array initializer: values must have the
same type, in this case, int. Length of
the array is the number of values in the
list

12 

Question 2 (10 points). a) Write a single statement that declares and
initializes a two-dimensional int array b to look like the table below.

4/9/09

3

13 

5 4 7 3

4 8 9 7

5 1 2 3

4 1 2 9

6 7 8 0

d

0 1 2 3

0

1

2

3

4

Type of d is int[][]

(“int array array”)

To declare variable d:

 int[][] d.

To create a new array and assign it to d:

 d= new int[5][4];

To reference element at row r column c:

 d[r][c]

Two-dimensional Array

14 

Multi-dimensional arrays initializer

Using an array initializer:

int[][] d= new int[][]{ {5,4,7,3}, {4,8,9,7}, {5,1,2,3}, {4,1,2,9}, {6,7,8,0} };

5 4 7 3

4 8 9 7

5 1 2 3

4 1 2 9

6 7 8 0

d

0 1 2 3

0

1

2

3

4

15 

Question 3 (20 points) a) Consider the program segment below.
Draw all variables (with their respective values) and objects created
by execution of this program segment.

int[][] c= new int[3][2] ;
int[] z= new int[] {3, 2, 1};
String[] s= new String[2];
z= new int[2];

b) Give an expression to reference the second element of z.

c) What is the result of the expression s[1].length() after the
execution of the code above?

d) Give the declaration of a single variable v to store the values 1 and
“Hi” at the same time.

16 

Question 2 (10 points). Write a single statement that declares and
initializes a two-dimensional int array b to look like the table below.

What’s in the exam? 

•  The material of the previous Prelims 
•  Arrays 
•  For loops 
•  While loops 

•  Algorithms 

17  18 

Execution of the for-loop

The for-loop:
for (int i= 2; i <= 200; i= i +1) {
 x= x + i*i;
}

loop counter: i
initialization: int i= 2;
loop condition: i <= 200;
increment: i= i + 1
repetend or body: { x= x + i; }

Called a “flow chart”

To execute the for-loop.
1.  Execute initialization.
2.  If loop condition false,

terminate execution.
3.  Execute repetend.
4.  Execute increment,

repeat from step 2.

i= 2;

i <= 200

i= i +1;

true

false

x= x + i*i;

4/9/09

4

19 

Note on ranges.

2..5 contains 2, 3, 4, 5. It contains 5+1 – 2 = 4 values

In the notation m..n, we require always, without saying it, that

 m <= n + 1 .

If m = n + 1, the range has 0 values.

2..4 contains 2, 3, 4. It contains 4+1 – 2 = 4 values

2..3 contains 2, 3. It contains 3+1 – 2 = 2 values

2..2 contains 2. It contains 2+1 – 2 = 1 values

The number of values in m..n is n+1 – m.

2..1 contains . It contains 1+1 – 2 = 0 values

3..1 contains . This is an invalid range!

Invariants 

•  Asser6ons: true‐false statements (comments) asserGng your 
beliefs about (the current state of)  your program. 

    // x is the sum of 1..n  <‐ asserts a specific relaGonship      
  between x and n 

•  Invariant: an asserGon about the variables that is true before 
and a]er each iteraGon (execuGon of the repetend). 

20 

21 

Finding an invariant

// Store in double variable v the sum
// 1/1 + 1/2 + 1/3 + 1/4 + 1/5 + … + 1/n

for (int k= 1; k <= n; k= k +1) {
 Process k;

}
// v =1/1 + 1/2 + … + 1/n

v= 0;
// invariant: v = sum of 1/i for i in 1..k-1

Command to do
something and

equivalent
postcondition

What is the invariant? 1 2 3 … k-1 k k+1 … n

The increment is executed a]er 
the repetend and before the next 
iteraGon 

22 

Spring’06 - Question 3 (20 points). Arrays and loops.
A tridiagonal array m is a square array in which, in each row k (0 ≤ k <
m.length), all elements are 0 except perhaps elements m[k][k-1], m[k][k],
and m[k][k+1] (if they exist).The following matrix is tridiagonal (* is any
integer)

* * 0 0 0 0 0
* * * 0 0 0 0
0 * * * 0 0 0
0 0 * * * 0 0
0 0 0 * * * 0
0 0 0 0 * * *
0 0 0 0 0 * *

Complete method isTridiagonal, whose specification is given below.

/** = “array m is tridiagonal”.
Precondition: m is square (number of rows = number of
columns). */
public static boolean isTridiagonal(int[][] m) {

23 

public static boolean isTridiagonal(int[][] m){
 // inv: rows 0..i-1 have tridiagonal property
 for (int i= 0; i != m.length; i= i+1) {

 // return false if row k contains a non-zero
 // where it should have a 0.
 for (int j= 0; j != m.length; j= j+1) {

 if (j != i-1 && j != i && j != i+1 &&
 m[i][j] != 0) {

 return false;
 }
 }

 }
 return true;

}

What’s in the exam? 

•  The material of the previous Prelims 
•  Arrays 
•  For loops 
•  While loops 

•  Algorithms 

24 

4/9/09

5

25 

Fall’06, Question 1 (20 points). Array b is in ascending order. Each value
may occur many times. Here is an example: {3, 3, 5, 5, 5, 5, 7, 9, 9, 9}. In
this example, the length of the longest segment of equal values is 4, since 5
occurs 4 times and the other values occur fewer times.

Write a single while loop that stores in x the length of the longest segment
of equal values in array b. The post-condition is given below, as is the
invariant. No credit will be given for a loop that does not use this
invariant at all. You may assume that b has at least one element, although
it is not necessary

26 

Beyond ranges of integers: the while loop

<condition>: a boolean expression.

<repetend>: sequence of
statements.

In comparison to for-loops: we get a broader notion of “there’s still stuff to
do” (not tied to integer ranges), but we must ensure that “condition” becomes
false (the statement that makes progress toward termination is in repetend).

condition repetend

false

true

<initialization>;
while (<condition>) {
 <repetend>
 - Process next piece of input;
 - make ready for the next piece of input;
}

27 

// Set c to the number of ‘e’s in String
s.

k= 0; c= 0;

// inv: c = #. of ‘e’s in s[0..k-1]

while (k < s.length()) {

 if (s.charAt(k) == ‘e’)
 c= c + 1;

 k= k+ 1;

}

// c = number of ‘e’s in s[0..n-1]

The while loop: 4 loopy questions. Allows us to focus on one thing at a
time and thus separate our concerns.

1. How does it start?
((how) does init. make inv
true?)
2. When does it stop?
(From the invariant and the
falsity of loop condition,
deduce that result holds.)
3. (How) does it make
progress toward
termination?

4. How does repetend
keep invariant true?

28 

Horizontal notation for arrays, strings, Vectors

Example of an assertion about an array b. It asserts that:
1.  b[0..k–1] is sorted (i.e. its values are in ascending order)
2.  Everything in b[0..k–1] is ≤ everything in b[k..b.length–1]

b <= sorted >=
0 k b.length

b
0 h k

Given the index h of the First element of a segment and
the index k of the element that Follows the segment,
the number of values in the segment is k – h.

b[h .. k – 1] has k – h elements in it.

h h+1

(h+1) – h = 1

29 

Understanding assertions about lists

0 1 2 3 4 5 6 7 8

X Y Z X A C Z Z Z v This is a list of Characters

v ≥ C ? all Z’s k 6
0 3 k 8

v ≥ C ? all Z’s k 5
0 3 k 8

v ≥ C all Z’s k 6
0 k 8

v ≥ W A C all Z’s k 4
0 k 8

Indicate
whether
each of

these
assertions is
true or false.

Common mistake #1 

30 

// Where is k?

v ≥ C ? all Z’s k ?
0 3 k 8

4/9/09

6

31 

Fall’06, Question 1 (20 points). Array b is in ascending order. Each value
may occur many times. Here is an example: {3, 3, 5, 5, 5, 5, 7, 9, 9, 9}. In
this example, the length of the longest segment of equal values is 4, since 5
occurs 4 times and the other values occur fewer times.

Write a single loop (either a while-loop or a for-loop) that stores in x the
length of the longest segment of equal values in array b. The post-condition
is given below, as is the invariant. No credit will be given for a loop that
does not use this invariant at all. You may assume that b has at least one
element, although it is not necessary

32 

1. How should the loop start? (how to make the invariant true?)

2. When can loop stop? (when is the post condition true?)

3. How can repetend make progress toward termination?

4. How does the repetend keep the invariant true?

33 

x= 0;
k= b.length;
while (0 != k) {

 if (b[k–1] == b[k+x–1]){
 x= x + 1;
 }
 k= k – 1

}

Common mistake #2 

34 

// Returning from nowhere

x= 0;
k= b.length;
while (0 != k) {

 if (b[k–1] == b[k+x–1]){
 x= x + 1;
 }
 k= k – 1

}
return x;

Common mistake #3 

35 

// Bad style: unnecessary variables

x= 0;
max= 0;
k= b.length;
while (0 != k) {

 if (b[k–1] == b[k+max–1]){
 max= max + 1;
 }
 k= k – 1
 x= max;

}

What’s in the exam? 

•  The material of the previous Prelims 
•  Arrays 
•  For loops 
•  While loops 

•  Algorithms 

36 

4/9/09

7

Algorithms 

•  Binary Search 
•  Dutch NaGonal Flag 
•  InserGon Sort 
•  SelecGon Sort 
•  ParGGon 

37 

Algorithms 

•  Binary Search 
•  Dutch NaGonal Flag 
•  InserGon Sort 
•  SelecGon Sort 
•  ParGGon 

38 

See Quiz on
April 3

Common mistake #4 

39 

•  Memorizing the algorithm without
understanding it

•  Unable to reproduce the algorithms if
there is a small change in the
specification

Result is the ability to memorize, not
the ability to solve problem!

Common mistake #5 

40 

Binary Search: Given a sorted (in ascending order) array segment
b[h..k-1] and a value x. Store in p an integer that satisfies:
R: b[h..p] <= x < b[p+1..k-1]

 ≤ x x >x
h p
k

Incorrect
post-condition b

 ≤ x >x
h p
k

Appropriate
post-condition b

Algorithms 

•  Binary Search 
•  Dutch NaGonal Flag 
•  InserGon Sort 
•  SelecGon Sort 
•  ParGGon 

41  42 

Question 4 (20 points). (a) Draw the invariants of the loops that perform
Insertion and Selection sort algorithms.

 (b) Write the loop for Selection Sort. The repetend should be written in English.

4/9/09

8

InserGon sort 

43  44 

Insertion Sort

 ?
0 n

pre: b sorted
0 n

post: b

 sorted ?
0 i n insertion sort

inv: b

for (int i= 0; i < n; i= i+1) {

}

2 4 4 6 6 7 5
0 i

2 4 4 5 6 6 7
0 i

Push b[i] down into its sorted
 position in b[0..i];

English repetend is 
good enough 

Algorithms 

•  Binary Search 
•  Dutch NaGonal Flag 
•  InserGon Sort 
•  SelecGon Sort 
•  ParGGon 

45  46 

 ?
0 n

pre: b sorted
0 n

post:b

Add property to invariant: first segment contains smaller values.

 ≤ b[i..], sorted ≥ b[0..i-1], ?
0 i n

invariant: b
selection sort

for (int i= 0; i < n; i= i+1) {

}

2 4 4 6 6 8 9 9 7 8 9
i n

2 4 4 6 6 7 9 9 8 8 9
i n

7
int j= index of min of b[i..n-1];

Swap b[j] and b[i];

Selection Sort

47 

Question 4 (20 points). a) Draw the invariants for the loops in the Insertion and
Selection sort algorithms.

b) Write the loop for Selection Sort. The repetend should be written in English.

 sorted ?
0 i n insertion sort

inv: b

 ≤ b[i..], sorted ≥ b[0..i-1], ?
0 i n

invariant: b
selection sort

for (int i= 0; i < n; i= i+1) {

}

int j= index of min of b[i..n-1];

Swap b[j] and b[i];

Algorithms 

•  Binary Search 
•  Dutch NaGonal Flag 
•  InserGon Sort 
•  SelecGon Sort 
•  ParGGon 

48 

4/9/09

9

49 
49

Partition algorithm: Given an array b[h..k] with some value x in b[h]:

 x ?
h k

P: b

 <= x x >= x

h j k

Q: b

 3 5 4 1 6 2 3 8 1 b
h k

change:

into 1 2 1 3 5 4 6 3 8 b
h j k

x is called the pivot value.
x is not a program variable; x just denotes the value initially in b[h].

Swap elements of b[h..k] and store in j to truthify P:

 1 2 3 1 3 4 5 6 8 b
h j k

or

Algorithm is an important
piece of the most famous

sorting algorithm,
quicksort

50 

Partition algorithm: Given an array b[h..k] with some value x in b[h]:

 <= x x ? >= x

h j p k

I: b

Invariant

j= h; p= k;

while (j < p) {

 if (b[j+1] <= b[j]){

 swap b[j] and b[j+1];

 j= j+1;

 } else {

 swap b[j+1] and b[p];

 p= p-1

 }

}

Summary 

•  Today we discussed 
– Arrays 
– For loops   
– While loops 
– Algorithms 

51 

Good Luck! 

52 

