
CS1110 About Prelim II (Thursday evening, 12 March, 7:30--9:00PM, Uris Hal l G01)

Review session, 1-3PM, Sun, 8 March, Phillips 101.

You should know everything that you needed to know
for the first test —we review this material beginning in
the next column. The new material since prelim 1 con-
sists of the following topics. You should know this ma-
terial thoroughly —note that loops will not be covered
on this exam.

1. Apparent and real types, casting, operator in-
stanceof, and function equals. Study pp. 148–155.
Know how to write a function equals. See the discussion
below under “Equals function”.

2. Class Vector. Be able to use class Vector. On any
question about Vector, we will specify any methods of
class Vector that you need to answer the question --you
don't have to memorize them.

3. Knowledge of class String. Know about the basic
String functions length(), charAt(k), substring(k, j), and
substring(k). We will specify any others that you need.

4. Ability to write functions (as we have been doing in
class and in several labs).

5. Recursive functions. Be able to write recursive func-
tions, as we have done in class and lab. Know the im-
portant points: (1) precise specification, (2) base case(s),
(3) recursive case(s), and (4) progress toward termina-
tion.

6. Abstract classes and methods. Know the purpose of
an abstract class (make a class abstract so that it cannot
be instantiated) and how to make a class abstract. Know
the purpose of an abstract method (make a method ab-
stract so that it must be overridden in any non-abstract
subclass) and how to write an abstract method. See pp.
163–164.

7. Style. We have made comments from time to time on
programming style —using good specifications, class
invariants, indenting, etc. All the material on style is
presented in Chapter 13 of the class text. You should be
familiar with this material, so read it for the prelim. You
will be especially responsible for Sections 13.3.1–2 on
specifications and Section 13.4 on describing variables.

Concepts and Definitions
Know the following terms, backward and forward.
Wishy-washy definitions will not get much credit. Learn
these not by reading but by practicing writing them
down, or have a friend ask you these and repeat them
out loud. You should be able to write programs that use
the concepts defined below, and you should be able to
draw objects and frames for calls.

Argument: An expression that occurs within the paren-
theses of a method call (arguments are separated by
commas).

Casting. Just as one can cast an int i to another type,
using, say, (byte) i or (double) i, one can cast a variable
of some class-type variable to a superclass or subclass.
Look in PLive to see about this. See p. 152–154.

Calling one constructor from another. In one con-
structor, the first statement must be a call on another
constructor in the same class (use keyword this instead
of the class-name) or a call on a constructor of the su-
perclass (use keyword super instead of the class-name).
If not, the constructor super() {} is inserted by Java.

equals(Object ob). Suppose this instance function is
declared in class C. This boolean function returns the
value of

"ob is the name of an object of class C and is
equal to this object".

The meaning of "equal to this object" depends on the
writer of the method and should be specified in a com-
ment before the function.

In class Object, it means "this object and ob are the
same object". Thus, for the equals defined in Object,
b.equals(d) and b == d have the same value (except in
the case b = null!).

Generally, "equal to this object" means "the fields of
this object and object ob are equal". See p. 154. Method
equals on p. 154 is written incorrectly, because e has to
be cast to Employee in order to reference the fields. It
should be:

/** = "e is an Employee, with the same fields as
 this Employee */�
public boolean equals(Object e) { �
 if (!(e instanceof Employee))
 return false;
 Employee ec= (Employee) e; �
 return name.equals(ec.name) &&
 start == ec.start &&
 salary == ec.salary;
�}

Folder. We assume you can draw a folder, or object or
instance of a class. For subclasses, remember that the
folder has more than one partition. Look at the home-
work we had on drawing folders.

Frame for a method call. The frame for a method call
contains: (1) the name of the method and the program
counter, in a box in the upper left, (2) the scope box (see
below), (3) the local variables of the method, (4) the
parameters of the method.

Inheriting methods and fields. A subclass inherits all
the components (fields and methods) of its superclass.

Inside-out and bottom-up rules. Used in determining
which declaration a variable reference or function call
refers to. Look them up in the text.

instanceof. ob instanceof C has the value of "object
ob is an instance of class C". p. 152–153.

Method call execution or evaluation: (1) Draw a
frame for the call � (2) Assign the (values of) the argu-
ments to the parameters. (3) Execute the method body.
When a name is used, look for it in the frame for the
call. If it is not there, look in the place given by the
scope box. �(4) Erase the frame for the call.

Methods, kinds: procedure, function, constructor:

A procedure definition has keyword void before the
procedure name. A procedure call is a statement.

A function definition has the result type in place of
void. A function call is an expression, whose value is
the value returned by the function.

A constructor definition has neither keyword void nor a
type, and its name is the same as the name of the class
in which it appears. The constructor call is a statement,
whose purpose is to initialize the fields of a newly cre-
ated folder.

New-expression. An expression of the form new
<class-name> (<arguments>). It is evaluated as follows:
(1) create a new object of class class-name and put it in
<class-name>'s file drawer. (2) Execute the constructor
call <class-name> (<arguments>); the method being
called appears in the newly created object. (3) Yield as
the result of the new-expression the name of the object
created in step (1).

Object. Every class that does not explicitly extend an-
other subclass automatically extends class Object. Class
Object has at least two instance methods: toString and
equals.

Overriding a method. In a subclass, one can redefine a
method that was defined in a superclass. This is called
overriding the method. In general, the overriding
method is called. To call the overridden method m (say)

of the superclass, use the notation super.m(...) --this can
only be done in methods of the subclass.

Real and apparent class. A variable x declared using,
say, CLAS x; has apparent class CLAS. The apparent
class is used in determining whether a reference to a
field or method is syntactically legal. One can write
x.m(...), for example, if and only if method m is de-
clared in or inherited by class CLAS. The real class of x
is the class of an object that is in x. It could be a sub-
class. If x.m(...) is legal, then it calls the method that is
accessible in the real class, not the apparent class. pp.
148–154.

Scope box for a call contains: For a static method: the
name of the class in which the method appears. For an
instance method: the name of the object in which the
instance appears.

Variable: a name with associated value OR a named
box that can contain a value of some type or class. For a
type like int, the value is an integer. For a class, it is the
name of (or reference to) an instance of the class —the
name that appears on the tab of the object.

A variable declaration has the basic syntax: “type vari-
able-name ;”. Its purpose is to indicate that a variable of
the given type is to be used in the program

There are 4 kinds of variable: parameter, local variable,
instance variable (or field), static variable (or class vari-
able).

A local variable is declared in the body of the method.
The variable is drawn in a frame for a call on the
method —when the frame is created.

An instance variable is declared in a class without modi-
fier static. An instance variable is drawn in every folder
of the class.

A parameter is declared within the parentheses of a
method header. The variable is drawn in a frame for a
call on the method —when the frame is created.

A static variable is declared in a class with modifier
static. A static variable is placed in the file drawer for
the class in which it is declared —when program execu-
tion starts.

Wrapper class. With each primitive type (e.g. int)
there is an associated wrapper class (e.g. Integer). The
wrapper class serves two purposes: (1) wrap or contain
one value of the primitive type, so the primitive-type
value can be treated as an object. (2) House some useful
methods for operating on values of the primitive type.

