
1

1

18 November 2008 GUIS —Graphical User Interfaces

Their mouse had a mean time between failure of … a week, at which time it would
jam up irreparably, or ... It would jam up on the table-- ... It had a flimsy cord whose
wires would break. Steve Jobs said "... Xerox says it can't be built for less than
$400, but I want a $10 mouse that will never fail and can be mass produced,
because it's going to be the primary interface of the computer of the future."

... Dean Hovey ... came back and said, "I've got some good news and some bad
news. The good news is, we've got a new project with Apple. The bad news is, I
told Steve we'd design him a mouse for ten bucks."

... A year … later ... we had a design, filed a patent, and were granted a patent, on
the electro-mechanical-optical mouse of today, which is still the reference design
for PC mice. ... and ... we ended up ... [making] the mouse as invisible to people
as it is today.

Read Chap. 17 of the text. The ProgramLive CD is a better way to learn about
GUIs. See the CD for examples of code.

Interview with Steve Sachs on Apple and the Mouse in 1979 and the first computer
with a GUI, the Apple Lisa (about $9,999 in about 1982).
http://library.stanford.edu/mac/primary/interviews/sachs/trans.html

2

JFrame’s content pane

South
EastWestCenter

North

Container cp= getContentPane();

JButton jb= new JButton(“Click here”);
JLabel jl= new JLabel(“label 2”);

cp.add(jb, BorderLayout.EAST);
cp.add(jl, BorderLayout.WEST);

pack();
setVisible(true);

Layout manager: An instance controls the placement of
components.

JFrame layout manager default: BorderLayout.

BorderLayout layout manager: Can place 5 components:

JFrameDemo.java

3

Putting components in a JFrame
import java.awt.*;
import javax.swing.*;
/** Demonstrate placement of components in a JFrame. Use BorderLayout.
 It places five components in the five possible areas:
 (1) a JButton in the east,
 (2) a JLabel in the west,
 (3) a JLabel in the south,
 (4) a JTextField in the north, and
 (5) a JTextArea in the center. */

public class ComponentExample extends JFrame {
 /** Constructor: a window with title t and 5 components */
 public ComponentExample(String t) {
 super(t);
 Container cp= getContentPane();
 cp.add(new JButton("click me"), BorderLayout.EAST);
 cp.add(new JTextField("type here", 22), BorderLayout.NORTH);
 cp.add(new JCheckBox("I voted today"), BorderLayout.SOUTH);
 cp.add(new JLabel("label 2"), BorderLayout.WEST);
 cp.add(new JTextArea("type\nhere", 4, 10), BorderLayout.CENTER);
 pack();
 } ComponentExample.java

4

What components can go in a JFrame
Packages that contain classes that deal with GUIs:
java.awt: Old package. javax.swing: New package.

Javax.swing has a better way of listening to buttons, text fields, etc.
Its components are more flexible.

JButton, Button: Clickable button
JLabel, Label: Line of text
JTextField, TextField: Field into which the user can type:
JTextArea, TextArea: Many-row field into which user can type
JPanel, Panel: Used for graphics; to contain other components
JCheckBox: Checkable box with a title
JComboBox: Menu of items, one of which can be checked
JRadioButton: Same functionality as JCheckBox
Container: Can contain other components
Box: Can contain other components

Component: Something that can be placed in a GUI
window. They are instances of certain classes, e.g.

5

Basic Components
Component
 Button, Canvas
 Checkbox, Choice
 Label, List, Scrollbar
 TextComponent
 TextField, TextArea
 Container
 JComponent
 AbstractButton
 JButton
 JToggleButton
 JCheckBox
 RadioButton
 JLabel, JList
 JOptionPane, JPanel
 JPopupMenu, JScrollBar, JSlider
 JTextComponent
 JTextField, JTextArea

Component: Something that can be
placed in a GUI window. These are
the basic ones that one uses in a GUI

Note the use of subclasses
to provide structure and
efficiency. For example,

there are two kinds of
JToggleButtons, so that

class has two subclasses.

6

Components that can contain other components
Component
 Box
 Container
 JComponent
 JPanel
 Panel
 Applet
Window
 Frame
 JFrame
 JWindow

java.awt is the old GUI package.

javax.swing is the new GUI package.
When they wanted to use an old name,
they put J in front of it.

(e.g. Frame and JFrame)

When constructing javax.swing, the
attempt was made to rely on the old
package as much as possible.

So, JFrame is a subclass of Frame.

But they couldn’t do this with JPanel.

2

7

import java.awt.*; import javax.swing.*;

/** Instance has labels in east /west, JPanel with four buttons in center. */
public class PanelDemo extends JFrame {
 JPanel p= new JPanel();

 /** Constructor: a frame with title "Panel demo", labels in east/west,
 blank label in south, JPanel of 4 buttons in the center */
 public PanelDemo() {
 super("Panel demo");
 p.add(new JButton("0")); p.add(new JButton("1"));
 p.add(new JButton("2")); p.add(new JButton("3"));

 Container cp= getContentPane();
 cp.add(new JLabel("east"), BorderLayout.EAST);
 cp.add(new JLabel("west"), BorderLayout.WEST);
 cp.add(new JLabel(" "), BorderLayout.SOUTH);

 cp.add(p, BorderLayout.CENTER);

 pack(); show();
 }
}

JPanel as a
container

JPanel layout manager default: FlowLayout.

FlowLayout layout manager: Place any number of
components. They appear in the order in which they

were added, taking as many rows as necessary.
8

import javax.swing.*; import java.awt.*;

/** Demo class Box. Comment on constructor says how frame is laid out. */
public class BoxDemo extends JFrame {
 /** Constructor: frame with title "Box demo", labels in the east/west,
 blank label in south, horizontal Box with 4 buttons in center. */
 public BoxDemo() {
 super("Box demo");

 Box b= new Box(BoxLayout.X_AXIS);
 b.add(new JButton("0")); b.add(new JButton("1"));
 b.add(new JButton("2")); b.add(new JButton("3"));

 Container cp= getContentPane();
 cp.add(new JLabel("east"), BorderLayout.EAST);
 cp.add(new JLabel("west"), BorderLayout.WEST);
 cp.add(new JLabel(" "), BorderLayout.SOUTH);
 cp.add(b, BorderLayout.CENTER);

 pack(); show();
 }
}

Class Box: a
container

Box layout manager default: BoxLayout.

BoxLayout layout manager: Place any number
of components. They appear in the order in which

they were added, taking only one row.

9

public class BoxDemo2 extends JFrame {
 /** Constructor: frame with title t and 3 columns with n, n+1, and n+2 buttons. */
 public BoxDemo2(String t, int n) {
 super(t);

// Create Box b1 with n buttons.
 Box b1= new Box(BoxLayout.Y_AXIS);
 for (int i= 0; i != n; i= i+1)
 b1.add(new JButton(”1 " + i));

 // Create Box b2 with n+1 buttons.
 Box b2= …

 // Create Box b3 with n+2 buttons.
 Box b3= …

// Create horizontal box b containing b1, b2, b3
 Box b= new Box(BoxLayout.X_AXIS);
 b.add(b1);
 b.add(b2);
 b.add(b3);

Container cp= getContentPane();
 cp.add(b, BorderLayout.CENTER);
pack(); show();

 }

Boxes within a Box�
3 vertical boxes, each a
column of buttons, are
placed in a horizontal

box

BoxLayout layout
manager: Place any

number of components.
They appear in the

order in which they
were added, taking only

one row.

10

To simulate using a BoxLayout manager for a JFrame, create a Box and
place it as the sole component of the JFrame:

 JFrame jf= new JFrame(“title”);
 Box b= new Box(BoxLayout.X_AXIS);
 Add components to b;
 jf.add(b,BorderLayout.CENTER);

Simulate BoxLayout Manager�
in a JFrame

11

1.  Start developing a GUI by changing an already existing one. There
are a lot of details, and it is hard to get all the details right when one
starts from scratch and has little idea about the Java GUI package.

2.  The easiest way to learn about GUIs is to listen the ProgramLive
lectures in Chapter 17. That chapter shows you code for everything,
and you can also download the code from the CD and compile and use
it yourself.

3. We have shown you how to place components in a GUI. We haven’t
yet shown you how to “listen” to things like button clicks in a GUI.
That comes later.

Interested in learning more about GUIS?

