
11/5/08

1

1

CS1110 6 November 2008 �
Algorithms on arrays Reading: 8.3–8.5

Please punctuate this:

Dear John, I want a man who knows what love is
all about you are generous kind thoughtful people
who are not like you admit to being useless and
inferior you have ruined me for other men I yearn
for you I have no feelings whatsoever when we're
apart I can be forever happy will you let me be
yours

Gloria

The searching, sorting, and other algorithms will be on the
course website, along with a JUnit testing class for them.

2

A neat example of the ambiguity of English! We try to use
English properly and precisely, but ambiguity tends to creep
in because of difference in cultures in which people grow up
and simply because of differences of opinion.

I want a man who knows what love is all about. You are
generous, kind, thoughtful. People who are not like you admit to
being useless and inferior. You have ruined me for other men. I
yearn for you. I have no feelings whatsoever when we're apart. I
can be forever happy -- will you let me be yours? Gloria

I want a man who knows what love is. All about you are
generous, kind, thoughtful people, who are not like you. Admit
to being useless and inferior. You have ruined me. For other men,
I yearn. For you, I have no feelings whatsoever. When we're
apart, I can be forever happy. Will you let me be?
Yours, Gloria .

3

Horizontal notation for arrays, strings, Vectors

Example of an assertion about an array b. It asserts that:
1.  b[0..k–1] is sorted (i.e. its values are in ascending order)
2.  Everything in b[0..k–1] is ≤ everything in b[k..b.length–1]

b <= sorted >=
0 k b.length

b
0 h k

Given the index h of the First element of a segment and
the index k of the element that Follows the segment,
the number of values in the segment is k – h.

b[h .. k – 1] has k – h elements in it.

h h+1

(h+1) – h = 1
44

Partition algorithm: Given an array b[h..k] with some value x in b[h]:

 x ?
h k

P: b

 <= x x >= x
h j k

Q: b

 3 5 4 1 6 2 3 8 1 b
h k

change:

into 1 2 1 3 5 4 6 3 8b
h j k

x is called the pivot value.
x is not a program variable; x just denotes the value initially in b[h].

Swap elements of b[h..k] and store in j to truthify P:

 1 2 3 1 3 4 5 6 8b
h j k

or

5

Linear search (for value known to be in array)

 v is in here
h k

precondition P: b

postcondition Q: b

Vague spec.: Find first occurrence of v in b[h..k-1], which is known to be there.
Better spec.: Store an integer in i to truthify postcondition Q:

 Q: 1. v is not in b[h..i-1]
 2. v = b[i]

 v not here v ?
h i k

Can’t simply combine P and Q because position of v not known
initially. But we can just delete value v from Q:

invariant Q: b v not here v is in here
h i k

6

Linear search

 v is in here
h k

P: b

Vague spec.: Find first occurrence of v in b[h..k-1].
Better spec.: Store an integer in i to truthify postcondition Q:

 Q: 1. v is not in b[h..i-1]
 2. i = k OR v = b[k]

 v not here

 i
h k

 v not here v ?
h i k

Q: b

OR
 b

11/5/08

2

7

Binary search: Vague spec: Look for v in sorted array segment b[h..k].
 Better spec:
Precondition P: b[h..k] is sorted (in ascending order).

Store in i to truthify:
Postcondition Q: b[h..i] <= v and v < b[i+1..k]

Below, the array is in non-descending order:

 ?
h k

P: b

 <= v > v
h i k

Q: b

Called binary search
because each iteration
of the loop cuts the
array segment still to
be processed in half

8

How many iterations does binary search make?

Suppose k-h is a power of 2.

How many iterations does binary search
perform? Figure it out, as a function of
k-h, and be ready to tell us on Tuesday.

p s^p
0 2^0 = 1
1 2^1 = 2
2 2^2 = 4
3 2^3 = 8
4 2^4 = 16
5 2^5 = 32
6 2^6 = 64
… …

9

Reversal: Reverse the elements of array segment b[h..k].

 reversed
h k

postcondition Q:

 not reversed
h k

precondition P:

 1 2 3 4 5 6 7 8 9 9 9 9 b
h k

Change:

into 9 9 9 9 8 7 6 5 4 3 2 1b
h k

10

Check whether two arrays are equal

/** = “b and c are equal” (both null or both contain�
 arrays whose elements are the same) */
public static boolean equals(int[] b, int[] c) {

}

