CS1110 23 October 2008

The while loop and assertions
Read chapter 7 on loops.
The lectures on the ProgramLive CD can be a big help.

Quotes for the Day:

Instead of trying out computer programs on test cases until they are debugged one should prove that they have the desired properties.
John McCarthy, 1961, A basis for a mathematical theory of computation.
Testing may show the presence of errors, but never their absence
Dijkstra, Second NATO Conf. on Software Engineering, 1969.
A week of hard work on a program can save you $1 / 2$ hour of thinking.
Paul Gries, CS, University of Toronto, 2005

The while loop: syntax

while (<condition>) <repetend> <condition>: a boolean expression <repetend>: a statement.
while (<condition> \{ sequence of declarations and statements \}

BUT: We almost always make the <repetend> a block.

For loop, corresponding while loop	<initialization>;
<initialization>;	int $k=b ;$
for (int $k=b ; k<=c ; k=k+1)\{$	while $(k<=c)\{$
Process k	Process $k ;$
$\}$	$k=k+1 ;$
	$\}$

4 loopy questions

// Set c to the number of 'e's in String s

int $\mathrm{n}=\mathrm{s}$.length();	1. How does it start? (what is the initialization?)
$\mathrm{c}=0$;	
// invariant: $\mathrm{c}=$ number of 'e's in s[0..k-1]	
$\begin{gathered} \text { for (int } k=0 ; k<n ; k=k+1)\{ \\ \text { if }\left(s . c h a r A t(k)=={ }^{\prime} e^{\prime}\right) \end{gathered}$	2. When does it stop? (From
	the invariant and the falsity
$\mathrm{c}=\mathrm{c}+1 ;$	of loop condition, deduce that result holds.)
\}	3. How does it make progress toward termination?
$/ / \mathrm{c}=$ number of 'e's in s[0..n-1]	4. How does repetend keep invariant true?

The while loop: 4 loopy questions. Allows us to focus on one thing at a time. Separate our concerns.
$/ /$ Set c to the number of ' e 's in String s.

$\begin{aligned} & \text { int } \mathrm{n}=\mathrm{s} \text {.length(); } \\ & \mathrm{c}=0 ; \mathrm{k}=0 \end{aligned}$	1. How does it start? (what is the initialization?)
// invariant: $\mathrm{c}=$ number of 'e's in s[0..k-1]	
$\begin{aligned} & \text { while }(\mathrm{k}<\mathrm{n}) \text { \{ } \\ & \text { if }\left(\mathrm{s} . \operatorname{charAt}(\mathrm{k})=={ }^{\prime} \mathrm{e}\right. \text { ') } \\ & \mathrm{c}=\mathrm{c}+1 \text {; } \end{aligned}$	2. When does it stop? (From the invariant and the falsity of loop condition, deduce that result holds.)
$\}^{\mathrm{k}}=\mathrm{k}+1$;	3. How does it make progress toward termination?
// $\mathrm{c}=$ number of 'e's in s[0..n-1]	4. How does repetend keep invariant true?

Develop loop to store in x the sum of $1 . .100$.

We'll keep this definition of x and k true:

$$
x=\text { sum of } 1 . . k-1
$$

1. How should the loop start? Make range 1..k-1 empty: $\mathbf{k}=\mathbf{1 ;} \mathbf{x}=\mathbf{0}$;
2. When can loop stop? What condition lets us
know that x has result? When $\mathrm{k}==\mathbf{1 0 1}$
3. How can repetend make progress toward termination? $k=k+1$;
4. How do we keep def of x, h, k true? $x=x+k$;
$\mathrm{k}=1$; $\mathrm{x}=0$;
// invariant: $x=$ sum of $1 . .(k-1)$
while (k ! $=101$) \{
$\mathrm{x}=\mathrm{x}+\mathrm{k}$;
$\mathrm{k}=\mathrm{k}+1$;
\}
// $\{x=$ sum of $1 . .100\}$
```
            Roach infestation!
/** = number of weeks it takes roaches to fill the apartment --see p 244 of text*/
public static int roaches() {
    double roachVol=.001; // Space one roach takes
    double aptVol=20*20*8; // Apartment volume
    double growthRate= 1.25; // Population growth rate per week
    int w=0; // number of weeks
    int pop= 100; // roach population after w weeks
    // inv: pop = roach population after w weeks AND
    // before week w, volume of the roaches < aptVol
    while (aptVol > pop * roachVol ) {
        pop= (int) (pop * growthRate);
        w=w + 1;
    }
    return w;
}
```


Calculate quotient and remainder when dividing x by y

$$
x / y=q+r / y \quad 21 / 4=4+3 / 4
$$

Property: $x=q^{*} y+r$ and $0 \leq r<y$
$/ * *$ Set q to and r to remainder.
Note: $\mathrm{x}>=0$ and $\mathrm{y}>0 * /$
int $\mathrm{q}=0$; int $\mathrm{r}=\mathrm{x}$;
$/ /$ invariant: $\mathrm{x}=\mathrm{q} * \mathrm{y}+\mathrm{r} \quad$ and $0 \leq \mathrm{r}$
while ($\mathrm{r}>=\mathrm{y}$) \{
$r=r-y ;$
$\mathrm{q}=\mathrm{q}+1$;
\}
$/ /\{\mathrm{x}=\mathrm{q} * \mathrm{y}+\mathrm{r}$ and $0 \leq \mathrm{r}<\mathrm{y}\}$

