
1

1

CS1110 23 October 2008�
The while loop and assertions

Read chapter 7 on loops. �
The lectures on the ProgramLive CD can be a big help.

Quotes for the Day:
Instead of trying out computer programs on test cases until they are debugged,
 one should prove that they have the desired properties.
John McCarthy, 1961, A basis for a mathematical theory of computation.

Testing may show the presence of errors, but never their absence.
Dijkstra, Second NATO Conf. on Software Engineering, 1969.

A week of hard work on a program can save you 1/2 hour of thinking.
Paul Gries, CS, University of Toronto, 2005.

2

The while loop: syntax
while (<condition>)

<repetend>

while (<condition> {
 sequence of declarations
 and statements
}

<condition>: a boolean expression.

<repetend>: a statement.�

BUT: We almost always make the
 <repetend> a block.

condition

repetend

false

true

3

The while loop
System.out.println(5*5);
System.out.println(6*6);
System.out.println(7*7);
System.out.println(8*8);

int k= 5;
while (k <= 8) {
 System.out.println(k*k);
 k= k+1;
}

To execute the while loop:
(1)  Evaluate condition k <= 8;

if false, stop execution.
(2) Execute the repetend.
(3) Repeat again from step (1).

Trace execution of the loop:
 Study section 7.1.2 shows
 you how to “trace”
 execution of a loop.

k= 5;

k <= 8

System.out.println(k*k);
k= k+1;

false

true

4

For loop, corresponding while loop
<initialization>;
for (int k= b; k <= c; k= k+1) {
 Process k
}

<initialization>;
int k= b;
while (k <= c) {
 Process k;
 k= k+1;
}

5

// Set c to the number of ‘e’s in String s.

int n= s.length();

c= 0;

// invariant: c = number of ‘e’s in s[0..k-1]

for (int k= 0; k < n; k= k+1) {

 if (s.charAt(k) == ‘e’)

 c= c + 1;

}

// c = number of ‘e’s in s[0..n-1]

4 loopy questions

1. How does it start? (what is
 the initialization?)

2. When does it stop? (From
 the invariant and the falsity
 of loop condition, deduce
 that result holds.)

3. How does it make progress
 toward termination?

4. How does repetend keep
 invariant true?

6

// Set c to the number of ‘e’s in String s.

int n= s.length();

c= 0; k= 0;

// invariant: c = number of ‘e’s in s[0..k-1]

while (k < n) {

 if (s.charAt(k) == ‘e’)

 c= c + 1;

 k= k+ 1;

}

// c = number of ‘e’s in s[0..n-1]

The while loop: 4 loopy questions. Allows us to focus on one
 thing at a time. Separate our concerns.

1. How does it start? (what is
 the initialization?)

2. When does it stop? (From
 the invariant and the falsity
 of loop condition, deduce
 that result holds.)

3. How does it make progress
 toward termination?

4. How does repetend keep
 invariant true?

2

7

Understanding assertions about lists

This is an assertion about v
 and k. It is true because
 chars of v[0..3] are greater
 than ‘C’ and chars of v[6..8]
 are ‘Z’s.

0 1 2 3 4 5 6 7 8
X Y Z X A C Z Z Zv This is a list of Characters

v ≥ C ? all Z’s k 6
0 3 k 8

v ≥ C ? all Z’s k 5
0 3 k 8

v ≥ C all Z’s k 6
0 k 8

v ≥ W A C all Z’s k 4
0 k 8

Indicate
 whether
 each of
 these 3

 assertions
 is true or

 false. 8

We add the postcondition and
 also show where the invariant
 must be true:
initialization;
// invariant: P
while (B) {
 // { P and B}
 repetend
 // { P }
}
// { P }
// { Result R }

The four loopy questionsSuppose we have this while
 loop, with initialization:
initialization;
while (B) {
 repetend
}

Second box helps us develop four loopy
 questions for developing or understanding
 a loop:

1. How does loop start? Initialization
 must truthify inv P.

2. When does loop stop?

At end, P and !B are true, and these must
 imply R. Find !B that satisfies P &&
!B => R.

3. Make progress toward termination?
 Put something in repetend to ensure this.

4. How to keep invariant true? Put
 something in repetend to ensure this.

9

Develop loop to store in x the sum of 1..100.

1. How should the loop start? Make range 1..k–1�
empty: k= 1; x= 0;

We’ll keep this definition of x and k true: �
 x = sum of 1..k–1

2. When can loop stop? What condition lets us �
know that x has result? When k == 101
3. How can repetend make progress toward termination? k= k+1;
4. How do we keep def of x, h, k true? x= x + k;

Four loopy
 questions

k= 1; x= 0;
// invariant: x = sum of 1..(k–1)
while (k != 101) {
 x= x + k;
 k= k + 1;
}
// { x = sum of 1..100 } 10

Roach infestation!

/** = number of weeks it takes roaches to fill the apartment --see p 244 of text*/
public static int roaches() {
 double roachVol= .001; // Space one roach takes
 double aptVol= 20*20*8; // Apartment volume
 double growthRate= 1.25; // Population growth rate per week

 int w= 0; // number of weeks
 int pop= 100; // roach population after w weeks

 // inv: pop = roach population after w weeks AND
 // before week w, volume of the roaches < aptVol
 while (aptVol > pop * roachVol) {
 pop= (int) (pop * growthRate);
 w= w + 1;
 }
 return w;
 }

11

Iterative version of logarithmic
 algorithm to calculate b**c.

/** set z to b**c, given c ≥ 0 */
int x= b; int y= c; int z= 1;
// invariant: z * x**y = b**c and 0 ≤ y ≤ c
while (y != 0) {
 if (y % 2 == 0)

{ x= x * x; y= y/2; }
 else { z= z * x; y= y – 1; }
}
// { z = b**c }

Rest on identities:

b**0 = 1

b**c = b * b**(c-1)

for even c, b**c = (b*b)**(c
/2)

 3*3 * 3*3 * 3*3 * 3*3 =
 3**8

(3*3)*(3*3)*(3*3)*(3*3) =
 9**4

Algorithm is logarithmic in c,
 since time is proportional to log c

/** = b**c, given c ≥ 0 */
public static int exp(int b, int c) {
 if (c == 0) return 1;
 if (c%2 = 0) return exp(b*b, c/2);
 return b * exp(b, c–1);
}

12

Calculate quotient and remainder when dividing x by y

 x/y = q + r/y 21/4= 4 + 3/4

Property: x = q * y + r and 0 ≤ r < y

/** Set q to and r to remainder.�
 Note: x >= 0 and y > 0 */
int q= 0; int r= x;
// invariant: x = q * y + r and 0 ≤ r
while (r >= y) {

r= r – y;
q= q + 1;

}
// { x = q * y + r and 0 ≤ r < y }

