CS1110 21 October 2008

Read: Sec. 2.3.8 and chapter 7 on loops. The lectures on the ProgramLive CD can be a big help.

Some anagrams
A decimal point I'm a dot in place
Debit card Bad credit
Dormitory Dirty room
Schoolmaster The classroom Statue of liberty Built to stay free The Morse code Here come dots Western Union No wire unsent Parishioners I hire parsons
Par I

Animosity Is no amity
Desperation A rope ends it Funeral Real fun
Slot machines Cash lost in 'em Snooze alarms Alas! No more Z's Vacation times I'm not as active George Bush He bugs Gore The earthquakes That queen shake

Circumstantial evidence Can ruin a selected victim
Victoria, England's queen Governs a nice quiet land
Eleven plus two Twelve plus one (and they have 13 letters!)

Announcements

1. Prelim 2 next Tuesday evening, 7:30PM, Uris Auditorium

Yes, for-loops are not on this prelim
2. Please complete an online questionnaire concerning your TA.
http://www.engineering.cornell.edu/TAEval/menu.cfm
This is a midterm evaluation. It is important, because your constructive comments are used to help the TA improve, which may help you in this course.

You will probably receive an email about this. Please complete the survey this week!

Precondition: assertion placed before a segment Postcondition: assertion placed after a segment

$$
\mathrm{x} \text { contains sum of these }
$$

Methodology for developing a for-loop

Recognize that a range of integers b.c has to be processed
Write the command and equivalent postcondition.
Write the basic part of the for-loop.
4. Write loop invariant.
5. Figure out any initialization.
6. Implement the repetend (Process k)
// Process b..c
Initialize variables (if necessary) to make invariant true.
// Invariant: range b..k-1 has been processed
for (int $k=b ; k<=c ; k=k+1)$ \{
// Process k
\}
// Postcondition: range b..c has been processed

Finding an invariant: something that is true before and after each iteration (execution of the repetend).
// Store in double variable v the sum
// $1 / 1+1 / 2+1 / 3+1 / 4+1 / 5+\ldots+1 / n \quad$ Command to 0
$\mathrm{v}=0 ; \quad$ something and
// invariant: $\mathrm{v}=1 / 1+1 / 2+\ldots+1 /(\mathrm{k}-1)$
for (int $\mathrm{k}=1 ; \mathrm{k}<=\mathrm{n} ; \mathrm{k}=\mathrm{k}+1$) \{
Process k
equivalent
\} postcondition
$/ / \mathrm{v}=1 / 1+1 / 2+\ldots+1 / \mathrm{n}-\mathrm{v}=$ sum of $1 / \mathrm{i}$ for i in range $1 . \mathrm{n}$
$\mathrm{v}=$ sum of $1 / \mathrm{i}$ for i in range $1 . . \mathrm{k}-1$
What is the invariant? $123 \ldots \mathrm{k}-1 \mathrm{k} \mathrm{k}+1 \ldots \mathrm{n}$

Find invariant: true before and after each iteration	
// set x to no. of adjacent equal pairs in $s[0 . . s$.length($)-1]$ - $\begin{array}{r}\text { Command } \\ \text { to do }\end{array}$// invariant: $x=$ no. of adjacent equal pairs in $s[0 . . k-1] \quad$	
for (int $\mathrm{k}=0$; $\mathrm{k}<\mathrm{s}$.leng	for (int $\mathrm{k}=0 ; \mathrm{k}<\mathrm{s} . \operatorname{length}() ; \mathrm{k}=\mathrm{k}+1)$ \{ and
Process k	for $\mathrm{s}=$ 'ebeee', equivalent
	$\mathrm{x}=2 . \quad$ post
$/ / \mathrm{x}=$ no. of adjacent equ	ual pairs in $s[0$..s.length()-1] -condition
k : next integer to process.	What is the invariant?
Which ones have been processed?	A. $x=$ no. adj. equal pairs in $s[1 . . k]$ B. $x=$ no. adj. equal pairs in $s[0 . . k]$
A. $0 . . \mathrm{k}$ C. a..k	C. $x=$ no. adj. equal pairs in $\mathrm{s}[1 . . \mathrm{k}-1]$
B. $0 . . \mathrm{k}-1 \quad$ D. a..k-1	D. $x=$ no. adj. equal pairs in $s[0 . . k-1]$
E. None of these	E. None of these
11	

