
1

1

CS1110 9 October 2008 Casting About
1.  Casting between classes
2.  Apparent and real classes.
3.  Operator instanceof

Procrastination
Leave nothing for to-morrow that can be done to-day. Lincoln
How does a project get a year behind schedule? One day at a time.
Fred Brooks
I don't wait for moods. You accomplish nothing if you do that. Your mind
 must know it has got to get down to work. Pearl S. Buck
When I start a new project, I procrastinate immediately so that I have
 more time to catch up. Gries

4.  The class hierarchy
5.  function equals
Study Secs 4.2 and 4.3 in text

Buy a poster with the procrastinator’s creed here: �
www.procrastinationhelp.com/humor/procrastinators-creed

After today, you have learned ALL the basics of classes,
and done extremely well. Be proud of yourselves.

2

a0
Animal

CatCat(String, int)�
getNoise()�
toString()�
getWeight()

age�
Animal(String, int)�
isOlder(Animal)

5

a1
Animal

DogDog(String, int)�
getNoise()�
toString()

age�
Animal(String, int)�
isOlder(Animal)

6

a0 null a1Vector<Animal> v
 0 1 2

QUESTION: Which method is called by
v.get(0).toString() ?

A.  the one in the hidden partition for Object
 of a0

B.  the one in partition Animal of a0

C.  the one in partition Cat of a0

D.  the one in partition Dog of a1

E.  None of these Object

Animal

Dog Cat

the class hierarchy:

3

QUESTION: Should a call
v.get(k).getWeight()

be allowed (should the program compile)?

a0
Animal

CatCat(String, int)�
getNoise()�
toString()�
getWeight()

age�
Animal(String, int)�
isOlder(Animal)

5

a1
Animal

DogDog(String, int)�
getNoise()�
toString()

age�
Animal(String, int)�
isOlder(Animal)

6

a0 null a1Vector<Animal> v
 0 1 2

A.  Yes, because v[0] has that method.

B.  No, because v[2] doesn’t have that
 method.

C.  No, because that method isn’t available
 in Animal.

D. None of these

4

QUESTION: Should a call
v.get(k).getWeight()

be allowed (should the program compile)?

a0
Animal

CatCat(String, int)�
getNoise()�
toString()�
getWeight()

age�
Animal(String, int)�
isOlder(Animal)

5

a1
Animal

DogDog(String, int)�
getNoise()�
toString()

age�
Animal(String, int)�
isOlder(Animal)

6

a0 null a1Vector<Animal> v
 0 1 2

A.  Yes, because v[0] has that method.

B.  No because v[2] doesn’t have that
 method.

C.  No, because that method isn’t available
 in Animal.

Apparently, v[k] is an Animal!

5

The call
v.get(k).getWeight()

is illegal, and the program won’t compile,
 because: The apparent type of v[k], which is
 Animal, does not declare or inherit a method
 getWeight.

a0
Animal

CatCat(String, int)�
getNoise()�
toString()�
getWeight()

age�
Animal(String, int)�
isOlder(Animal)

5

a1
Animal

DogDog(String, int)�
getNoise()�
toString()

age�
Animal(String, int)�
isOlder(Animal)

6

a0 null a1Vector<Animal> v
 0 1 2

Apparently, v[k] is an Animal!

6

Casting up the class hierarchy a0
Animal

CatCat(String, int)�
getNoise()�
toString()�
getWeight()

age�
Animal(String, int)�
isOlder(Animal)

5

a1
Animal

DogDog(String, int)�
getNoise()�
toString()

age�
Animal(String, int)�
isOlder(Animal)

6

Object

Animal

Dog Cat

You know about casts like

 (int) (5.0 / 7.5)

 (double) 6

 double d= 5; // automatic cast

We now discuss casts up and down the
 class hierarchy.

 Animal h= new Cat(“N”, 5);

 Cat c= (Cat) h;

2

7

Implicit casting up the class hierarchy

public class Animal {

 /** = "this is older than h" */
 public boolean isOlder(Animal h)
 { return this.age > h.age; }
}

c= new Cat(“C”, 5);
d= new Dog(“D”, 6);
c.isOlder(d) ?????

a0
Animal

CatCat(String, int)�
getNoise()�
toString()�
getWeight()

age�
Animal(String, int)�
isOlder(Animal)

5

a1
Animal

DogDog(String, int)�
getNoise()�
toString()

age�
Animal(String, int)�
isOlder(Animal)

6
isOlder: 1 a0

h
Animal

Object

Animal

Dog Cat

a1 is cast from Dog to Animal, automatically

Casts up the
 hierarachy

 done
 automatically

Upward automatic
 casts make sense. Here,
 any Dog is an Animal

a1

8

Implicit casting up the class hierarchy
public class Animal {

 /** = "this is older than h" */
 public boolean isOlder(Animal h)
 { return this.age > h.age; }
}

c= new Cat(“C”, 5);

d= new Dog(“D”, 6);

c.isOlder(d) --what is its value?

a1
Animal

DogDog(String, int)�
getNoise()�
toString()

age�
Animal(String, int)�
isOlder(Animal)

6

isOlder: 1 a0

h a1
Animal

Apparent type of h. Syntactic
 property. The type with which h is
 defined.

Real type of h: Doc (type of object a1).

Semantic property. The class-type of
 the folder whose name is currently in h.

Two new
 terms to
 learn!

Apparently, h is an Animal,
 but really, it’s a Dog.

9

What components can h reference?
public class Animal {

 /** = "this is older than h" */
 public boolean isOlder(Animal h)
 { return this.age > h.age; }
}

c= new Cat(“C”, 5);
d= new Dog(“D”, 6);
d.isOlder(c)

isOlder: 1 a1

h a0
Animal

Apparent type of h: Animal�
Real type of h: Cat

What can isOlder reference in object h?

Cat(String, int)�
getNoise()�
toString() getWeight()

a0
Animal

Cat

name

age�
Animal(String, int)�
isOlder(Animal)�
getNoise() getName()�
toString()

Determined by the apparent type:�
Only components in partition Animal (and
 above)!!!

h.getWeight() is illegal. Syntax error.

10

What method is called by h.toString() ?
public class Animal {

 public boolean isOlder(Animal h) {
 String s= h.toString();
 return this.age > h.age;
} }

c= new Cat(“C”, 5);
d= new Dog(“D”, 6);
d.isOlder(c)

isOlder: 1 a1

h a0

Apparent type of h: Animal�
Real type of h: Cat What method is called by h.toString() ?

Cat(String, int)�
getNoise()�
toString() getWeight()

a0
Animal

Cat

name

age�
Animal(String, int)�
isOlder(Animal)�
getNoise() getName()�
toString()

s
Determined by the real type:�
The overriding toString() in Cat.

11

Explicit cast down the hierarchy
public class Animal {
 // If Animal is a cat, return its weight;
 otherwise, return 0.
 public int checkWeight(Animal h) {
 if (!)
 return 0;
 // h is a Cat

 return c.getWeight();
}

Apparent type of h: Animal�
Real type of h: Cat

Cat(String, int)�
getNoise()�
toString() getWeight()

a0
Animal

Cat

name

age�
Animal(String, int)�
isOlder(Animal)�
getNoise() getName()�
toString()

isOlder: 1 a1

h a0 c a0
Animal Cat

// downward castint c= (Cat) h ;

Object

Animal

Dog Cat

Here, (Dog) h �
would lead to a runtime
 error.

Don’t try to cast an
 object to something that
 it is not!

(h instanceof Cat)

12

The correct way to write method equals
public class Animal {
 /** = “h is an Animal with the same�
 values in its fields as this Animal */
 public boolean equals (Object h) {

 if (!(h instanceof Animal)) return false;
 Animal ob= (Animal) h;
 return name.equals(ob.name) &&
 age == ob.age;
}

Object

Animal

Dog Cat

Animal

a0

Cat(String, int)�
getNoise()�
toString() getWeight()

Cat

name

age�
Animal(String, int)�
isOlder(Animal)�
getNoise() getName()�
toString()

Object

equals(Object)

