
1

1

CS1110 Classes, stepwise refinement 25 Sep 2008

Rsrecah on spleilng
Aoccdrnig to a rscheearch at Cmabirgde Uinervtisy, it deosn't
 mttaer in waht oredr the ltteers in a wrod are, the olny
 iprmoetnt tihng is that the frsit and lsat ltteer be at the rghit
 pclae. The rset can be a total mses and you can sitll raed it
 wouthit porbelm.Tihs is bcuseae the huamn mnid deos not
 raed ervey lteter by istlef, but the wrod as a wlohe.

Miscellaneous points about classes.�
More on stepwise refinement.

Prelim 7:30-9:00 Tuesday, 30 Sept., Philips 101

Review session: 1:00-3:00, Sunday, 28 Sept., Philips 101

2

Help: Get it now if you need it!!
• One-on-one help from TAs. For info, get on the course
 website and click "Staff-info".

• Call Cindy Pakkala 255-8240 for an appointment with Gries.

• See a consultant in the ACCEL Sun, Mon, Tues, Wed, Thurs
 4:00pm to 11:00pm.

 • Peer tutoring (free). On http://www.engineering.cornell.edu,
 click on "student services". On the page that comes up, click
 on ”Engineering Learning Initiatives (ELI.) in the left column,
 upper part. Then, click on "peer tutoring" in the left column.

• Take an AEW courses. Ask in Olin 167.

3

Content of this lecture
This lecture contains some final miscellaneous points to round out
 your knowledge of classes and subclasses. There are a few more
 things to learn after this, but we will handle them much later.

•  Inheriting fields and methods and overriding methods.
 Sec. 4.1 and 4.1.1: pp. 142–145
•  Purpose of super and this. Sec. 4.1.1, pp. 144–145.
•  More than one constructor in a class; another use of this.
 Sec. 3.1.3, pp. 110–112.
•  Constructors in a subclass —calling a constructor of the
 super-class. Sec. 4.1.3, pp. 147–148.

4

Employee c= new Employee(“Gries”, 1969, 50000);
c.toString()

a0

Object

name “Gries” start 1969

salary 50,000.00

getName() setName(String n) …
toString()

equals(Object) toString()

Employee

c a0

Which method toString()
 is called?

Overriding rule or�
bottom-up rule: �
To find out which is used,
 start at the bottom of the
 class and search upward
 until a matching one is
 found.

Terminology. Employee inherits methods and fields from
 Object. Employee overrides function toString.

Sec. 4.1,
 page 142

This class is on
 page 105 of the
 text.

5

Purpose of super and this
this refers to the name of the object in which it appears.
super is similar but refers only to components in the partitions above.

/** = String representation of this
 Employee */
public String toString() {
 return this.getName() + ", year ” +�
 getStart() + ", salary ” + salary;
}

ok, but unnecessary
/** = toString value from superclass */
public String toStringUp() {
 return super.toString();
}

necessary

Sec. 4.1, pages
 144-145

a0

Object

name “Gries”

start 1969

salary 50,000.00

getName() �
setName(String n) {…}
toString()
toStringUp() { …}

equals(Object) �
 toString()

Employee

6

A second constructor in Employee
Provide flexibility, ease of use, to user

/** Constructor: a person with name n, year hired d, salary s */
public Employee(String n, int d, double s) {
 name= n; start= d; salary= s;�
 }
/** Constructor: a person with name n, year hired d, salary 50,000 */
 public Employee(String n, int d) {
 name= n; start= d; salary= 50000;
}

First constructor

Second constructor;
 salary is always 50,000

/** Constructor: a person with name n, year hired d, salary 50,000 */
 public Employee(String n, int d) {
 this(n, d, 50000); �
}

 Another version of second
 constructor; calls first constructor

Here, this refers to the other constructor.
 You HAVE to do it this way

Sec. 3.1.3,
 page 110

2

7

a0
Object

name “Gries” start 1969

salary

10,000

Employee(String, int)
toString() getCompensation()

toString() …

Employee

Executivebonus

Executive(String, int, double)
getBonus() getCompensation()
toString()

50,000

Calling a superclass
 constructor from the
 subclass constructor

public class Executive extends Employee {
 private double bonus;
 /** Constructor: name n, year hired
 d, salary 50,000, bonus b */
 public Executive(String n, int d, double b) {
 super(n, d);
 bonus= b;
 }
}

The first (and only the first) statement in
 a constructor has to be a call to a
 constructor of the superclass. If you
 don’t put one in, then this one is
 automatically used:

super();

Principle: Fill in superclass fields first.

Sec. 4.1.3, page 147

8

Anglicizing an Integer
anglicize(“1”) is “one”
anglicize(“15”) is “fifteen”
anglicize(“123”) is “one hundred twenty three”
anglicize(“10570”) is “ten thousand five hundred seventy”

/** = the anglicization of n.
 Precondition: 0 < n < 1,000,000 */
public static String anglicize(int n) {

}

9

Principles and strategies

Develop algorithm step by step, using principles and strategies
 embodied in “stepwise refinement” or “top-down programming.
 READ Sec. 2.5 and Plive p. 2-5.

• Take small steps.
• Replace an English statement (what to do) by a sequence of
 statements –in English or Java— to do it (how to do).
• Compile often.
• Intersperse programming and testing.
• Write a method spec. before writing the method body.
• Mañana Principle: Write the method spec. and put something
 in the body so that can be compiled and produces something
 that allows further development. Put off its complete
 development until later. (Mañana means tomorrow, or an
 indefinite time in the future.)

