
1

1

CS1110 18 September 2008

Discussion of Methods: Executing method �
calls.If-statements. The return statement in a�
function. Local variables.
For this and next lecture: Read section 2.�
 but NOT 2.3.8!!!!�
Do the self-review exercises in 2.3.4
Oxymoron: a combination for epigrammatic effect of contradictory or
 incongruous words (as cruel kindness, laborious idleness)
airline food State worker
military intelligence peace force
Microsoft Works computer security
sanitary landfill tight slacks
religious tolerance business ethics

Congratulations!! You now know the basics of OO (object
-orientation). There are more odds and ends, which we will be
 discussing, but the basics have been covered. We now turn to:

Please sit next to
 someone. We will do
 some work in pairs
 today.

Prelim (preliminary exam) I�
Tuesday, September 30. 7:30-9:00PM

2

If you have a conflict, you MUST email Maria Witlox
mwitlox@cs.cornell.edu by Friday night (tomorrow night)
 so that we know how many people have conflicts.

Give Maria: Name. NetId. What the conflict is.

Tuesday, we will give you a handout explaining what is on
 prelim I. But you can see it now, as well as previous
 prelims, on the course website. Click on exams in left
 column.

3

Method body: sequence of statements enclosed in { }�
(interspersed with declarations)�

to execute, in the order in which they appear
/** Constructor: a chapter with title t, �
 number n, and previous chapter null.*/
public Chapter(String t, int n) {
 title= t;
 number= n;
 previous= null;
}

Execute the three
 assignments in the
 order in which
 they appear. Same
 scheme is used
 when a cook uses
 a recipe.

We explain exactly how a method call is executed so
 that you can understand how parameters and
 arguments work.

parameters:
 t and n

4

The frame (the box) for a method call
Remember: Every method is in a folder (object) or in a file-drawer.

method name, instruction counter scope box

local variables (don’t deal with these now)

parameters

scope box contains
 the name of entity
 that contains the
 method —a file
-drawer or object.

number of the statement of
 method body to execute
 next. Helps you keep track
 of what statement to
 execute next. Start off with
 1.

Draw the
 parameters
 as variables.

5

Execution of a method call.

a0
K

p

setP(int x) { 1: p= x; }

t a0

Execute the call t.setP(7);

The first (and only)
 statement is #1.
Procedure setP has one
 parameter: x.
The call has one argument:
 expression 7.

K

1. Draw a frame for the call.
2. Assign the value of the argument
 to the parameter (in the frame).

3. Execute the method body. (Look
 for variables in the frame; if not
 there, look in the place given by
 the scope box.)

4. Erase the frame for the call.

public class K {
 private int p;
 public void setP(int x) {
 p= x;
 }
} 6

Execute a function callpublic class K {
 private int p ;
 public int getP() {
 return p;
 }
}

1:

a1
K

p 5 getP()

1. Draw a frame for the call.

2. Assign the value of the
 argument to the parameter
 (in the frame).

3. Execute the method body.
 (Look for variables in the
 frame; if not there, look in the
 place given by the scope box.)

4. Erase the frame for the call.
 (and, if it is a function use the
 value of the return-statement
 expression as the function call
 value

t a1 K

x= t.getP() + 1;

x 3 int

2

7

Local variable: a variable declared within a method body

/** = x + y */
public static int sum(int x, int y) {
 int t;
 t= x + y;
 return t;
}

1

2
3

a0
Cp

setP(int x) { 1: p= x; }

 sum(int x, int y) {…}
C’s file drawer

Evaluate this call.

 C.sum(5, 6);
This time, when you create
 the frame for the call, draw
 parameters and local
 variables:

1. Draw a frame for the call.

2. Assign arg values to pars.

3. Execute the method body.

4. Erase frame for call. (If it is
 a function use value of return
-statement expr. as function
 call value 8

/* Put smaller of x, y in z */
if (x < y) {
 z= x;
}
else {
 z= y; �
}

if statement

/* swap x, y to put larger
 in y */
if (x > y) {
 int t;�
 t= x;
 x= y;
 y= t;
}

Syntax: �
if (<boolean expression>)�
 <statement>

Execution: if the <boolean
 expression> is true, then
 execute the <statement>

if-else statement

Syntax: �
if (<boolean expression>)�
 <statement1>�
else <statement2>

Execution: if the boolean
 expression is true, then execute
 <statement1>;�
otherwise, execute <statement2>

9

A function produces a result
/** = smallest of b, c, d */
public static int smallest(int b, int, c, int d) {

}

Execution of statement

 return <expr> ;

terminates execution of
 the procedure body and

 yields the value of
 <expr> as result of

 function call

Execution of function body must end by executing a return statement.

return d;

if (b <= c && b <= d) {
 return b;
}

Assertion

// { The smallest is either c or d }
if (c <= d) {
 return c;
}

// { the smallest is d }

10

Syntax of procedure/function/constructor and calls

public <result type> <name> (<parameter declarations>) { … }
public void <name> (<parameter declarations>) { … }
public <class-name> (<parameter declarations>) { … }

function
procedure

constructor

<name> (<arguments>)
<name> (<arguments>) ;

new <class-name> (<arguments>)

function call
procedure call

constructor call

Exec. of a function body must terminate by executing a statement
“return <exp> ;”, where the <exp> has the <result type>.

Exec. of a proc body may terminate by executing statement “return ;”

Exec. of a constructor body initializes a new object of class <class-name>.

<arguments>: <expression>, <expression>, …, <expression>

11

Local variable: a variable declared in a method body

Scope of local variable: the sequence of statements following it.

/** = the max of x and y */
public static int max(int x, int y) {
 // Swap x and y to put the max in x
 if (x < y) {
 int temp;
 temp= x;
 x= y;
 y= temp;
 }

 return x;
 }

scope of temp

You can’t use temp down here

This is an error.

12

Local variable: a variable declared in a method body

Scope of local variable: the sequence of statements following it.

/** s contains a name in the form exemplified by “David Gries”.
 Return the corresponding String “Gries, David”.
 There may be 1 or more blanks between the names. */
public static String switchFormat(String s) {
 // Store the first name in variable f and remove f from s
 int k; // Index of the first blank in s
 k= s.indexOf(' ');
 String f; // The first name in s.
 f= s.substring(0, k);
 s= s.substring(k);

 // Remove the blanks from s
 s= s.trim();
 return s + ", " + f;
}

scope of k

scope of f

Numbering of
 characters in a String:�
 012345�
“abcdef”

declaration
assignment

