
1

1

CS1110    11 Sept 2007. Customizing a class & testing

Quote for the day:
There is no reason anyone would want a computer in their home.
 --Ken Olson, founder of Digital Equipment Corp. (DEC), 1977.
The company was a huge player in computer hardware and software in CS
 academia in the 1970’s. The PDP machines were well known. The VAX had
 unix on it, and C, and Lisp. It was the main computer in most CS
 departments of any stature. DEC was bought by COMPAQ in the late 1990’s.

Quiz 2 on Tuesday (16 September):�
How do you evaluate a new expression (see slide 8)?�
What is the purpose of a constructor (see slide 7)?�

•  Fields (variables in a folder); getter & setter methods.
 Secs 1.4.1 (p. 45) & 3.1 (pp. 105–110 only)

•  Constructors. Sec. 3.1.3 (p. 111–112)
•  Testing methods. Appendix I.2.4 (p. 486)

2

One-on-One Sessions
Next two weeks, hold a 1/2-hour one-on-one session on a�
computer with each student in CS1110.

Purpose: See how well you understand what we have done, 
 let you ask questions, give you help. Graded 0-1: you get 1 if
 you took part in a session. Not counted in course grade.
 Purpose: to help you.

Instructors : Gries, TAs, consultants.
How to sign up: Visit the CMS for the course. Click on the
 assignment One-on-one. You will see a list of times and
 instructors. Choose one. First-come-first-served.

Not registered in the CMS? Email Maria Witlox immediately
 and ask her to register you: mwitlox@cs.cornell.edu

3

YOU CAN EXECUTE AN ASSIGNMENT 
STATEMENT

Quiz webpage said to look at top of page 28. It says:

To execute the assignment, evaluate the expression
 and store the value in the variable.

Quiz did not ask for a description of how the computer does it,
 or what you type in DrJava, it asked for you to execute the
 assignment statement. 

j  32
j=   j + 2;

34
34

j = j + 2
j = 32 + 2
j = 34

4

Field: a variable that is in each folder of a class.
a0

Chaptertitle …

number …
previous …public class Chapter {

    private String title; // Title of the chapter

    private int number; // Number of the chapter

    private Chapter previous; // previous chapter (null if none)    
}

We generally make fields
 private instead of public, so
 that they cannot be referenced
 from methods that are outside
 the class.

Declarations
 of fields

5

Getter and setter methods
a0

Chaptertitle …

number …
previous …

/** An instance describes a chapter�
      of a book */
public class Chapter {
    // Title of the chapter
    private String title; 

    /** = title of the chapter */
    public String getTitle() {
        return title;
    }

    /** Set chapter title to t */
    public void setTitle(String t) {
        title= t;
    }

Getter methods (functions) get
 or retrieve values from a folder.

Setter methods (procedures) set
 or change fields of a folder

getTitle()    setTitle(String t)

6

Initialize fields when a folder is first created

   new Chapter()

creates a object but doesn’t allow us
To say what values should be in it.
We would like to be able to say:

    new Chapter(“I am born”, 1, null)
to set the title to “I am born”, the�
chapter number to 1, and the previous�
chapter to null.
For this, we use a new kind of�
method, the constructor.

a0

Chaptertitle …

number …
previous …

getTitle()    setTitle(String t)



2

7

Purpose of a constructor:�
 To initialize (some) fields of a newly created object

/** An instance describes a chapter of a book */
public class Chapter {
    private String title; // Title of chapter
    private int number; // No. of chapter
    private Chapter previous; // previous�
                        // chapter (null if none)

    /** Constructor: an instance with title t,
          chapter number i, and previous
          chapter p (null if none) */
    public   Chapter(String t, int i,�
                                   Chapter p) {
        title= t;
        number= i;
        previous= p;
    }
}

a0

Chaptertitle …

number …
previous …

getTitle()    setTitle(String t)

Chapter(String t, �
              int i, Chapter c)

The name of a constructor is the name of the class.

Do not put a type or void here
8

New description of evaluation of a new-expression

new Chapter(“I am born”, 1, null)
1.  Create a new folder of class�

Chapter, with fields initialized to
 default values (e.g. 0 for int) 
–of course, put the folder in the
 file drawer.

2.   Execute the constructor call

      Chapter(“I am born”, 1, null)
3.   Use the name of the new object

 as the value of the new
-expression.

a0

Chaptertitle …

number …
previous …

getTitle()    setTitle(String t)

Chapter(String t, �
              int i, Chapter c)

Memorize this new definition!  Today! Now!

9

Testing —using JUnit 

Bug:  Error in a program.

Testing: Process of analyzing, running program, looking for bugs.

Test case: A set of input values, together with the expected output.

Debugging: Process of finding a bug and removing it.

Get in the habit of writing test cases for a method from the
 specification of the method even before you write the method. 

A feature called Junit in DrJava helps us develop test cases
 and use them. You have to use this feature in assignment A1.

10

1.   c1= new Chapter(“one”, 1, null);
Title should be: “one”; chap. no.: 1; previous: null. 

2.   c2= new Chapter(“two”, 2, c);
Title should be: “two”; chap. no.: 2; previous: c1. 

To create a testing framework: select menu File item new Junit
 test case…. At prompt, put in class name ChapterTester. This
 creates a new class with that name. Save it in same directory as
 class Chapter.

The class imports junit.framework.TestCase, which provides
 some methods for testing.

Need a way to run these test cases, to see whether the fields
 are set correctly. We could use the interactions pane, but then
 repeating the test is time-consuming.

Here are two test cases

11

/** A JUnit test case class.
 * Every method starting with "test" will be called when running
 * the test with JUnit. */
public class ChapterTester extends TestCase {

      /**  A test method.
       * (Replace "X" with a name describing the test.  Write as
       * many "testSomething" methods in this class as you wish,�
       * and each one will be called when testing.) */
      public void testX() {
      }
} One method you can use in testX is

assertEquals(x,y)

which tests whether expected value x equals y

12

A testMethod to test constructor and getter methods
/** Test first constructor and getter methods getTitle,
      getNumber, and getPrevious */
public void testConstructor() {
          Chapter c1= new Chapter("one", 1, null);
          assertEquals("one”, c1.getTitle(), );
          assertEquals(1, c1.getNumber());
          assertEquals(null, c1.getPrevious());

          Chapter c2= new Chapter("two", 2, c1);
          assertEquals("two”, c2.getTitle());
          assertEquals(2, c2.getNumber());
          assertEquals(c1, c2.getPrevious());
}

Every time you click button Test in
 DrJava, this method (and all other
 testX methods) will be called.

first
 test
 case

second
 test
 case

assertEquals(x,y): 

test whether x equals y ;
 print an error message
 and stop the method if
 they are not equal.

x: expected value,�
y: actual value.

A few other methods that
 can be used are listed on
 page 488.


