Voronoi diagrams and applications

Prof. Ramin Zabih

http://cs100r.cs.cornell.edu
Administrivia

- Last quiz: Thursday 11/15
- Prelim 3: Thursday 11/29 (last lecture)
- A6 is due Friday 11/30 (LDOC)
- Final projects due Friday 12/7
- Course evals!

http://www.engineering.cornell.edu/courseeval/
- This will count towards your grade!
 - We get a list of students who didn’t fill it out, and will contact you
Final projects

- All the proposals were fine
- Due Friday, Dec 7, 4-5PM
 - Pizza will be provided!
 - A few “I survived CS100R” T-shirts
- Other CS faculty will likely come by
 - There may also be photographers, etc.
Image differencing

Figure from Tim Morris
Applying image differencing

- By thresholding the difference image, we can figure out which pixels belong to the new object
 - I.e., the Coke or Pepsi can
- These pixels will have some colors
 - They are points in color space
- More generally, Coke pixels will tend to form a group ("cluster") that is largely red
 - Pepsi will be largely blue
- We can then compute a few model pixels
Voronoi diagrams

- Divide our space into regions, where each region $\text{reg}(P)$ consists of the points closest to a labeled point P
 - This is a Voronoi diagram
 - Long history (Descartes, 1644)
Impossible algorithms, redux

- There are no $O(n)$ sorting algorithms
 - More precisely, none based on comparisons
- You can use convex hull to sort
 - By placing the points on a parabola
 - So, is there an $O(n)$ convex hull algorithm?
- You can use Voronoi diagrams to compute a convex hull
 - So, is there an $O(n)$ Voronoi diagram algorithm?
 - You can also use 3D convex hull to compute a 2D Voronoi diagram
Using Voronoi diagrams

- Two obvious questions:
 - How can we efficiently create it?
 - How can we use it, once we’ve got it?

- A Voronoi diagram divides the space into Voronoi cells, reg(P) for some P

- If reg(P) is a strange shape, hard to figure out if the query is inside reg(P)
 - Fortunately, as the picture suggests, Voronoi cells have simple shapes
Computing $\text{reg}(P)$

- Consider some other labeled point Q
- Points might be in $\text{reg}(P)$ if they are closer to P than to Q
 - I.e., they are in a polygon (half-plane)
- $\text{reg}(P)$ is the intersection of $N-1$ polygons
 - There are faster ways to compute it
Voronoi cell properties

- The polygons whose intersection is \(\text{reg}(P) \) have another important property
 - They are convex!

- The intersection of two convex shapes is also a convex shape
Voronoi query lookup

- Given a Voronoi diagram and a query point, how do we tell which cell a query falls into? (I.e., solve the 1-NN problem)
- We can project down to the x-axis every point in the Voronoi diagram
 - This gives us a bunch of “slabs”
 - We can find which slab our query is in by using binary search
 - Within a slab, we can find the Voronoi cell using binary search
 - Unfortunately, this is pretty messy
Example of slabs

Figure from H. Alt “The Nearest Neighbor”
A Voronoi application

- Image compression: generate a terse representation of the image by allowing small errors to be introduced
- Simple method: vector quantization (VQ)
 - Video applications: Cinepak, Indeo, etc.
 - Also used for audio (Ogg Vorbis)
 - In a color image, each pixel has a 24-bit number associated with it (the colors)
 - We can generate a “code book” with, say, 2^8 entries, and use this instead of the colors
Example output (Matlab)
Triangulations

- Suppose that we want to analyze a curved surface, such as a wing or a vase
 - We can approximate it by a lot of small low-order polygons, especially triangle
 - This is tremendously important for, e.g., building planes, bridges, or computer graphics
 - Finite Element Method!

- Want to build a triangulation out of fat triangles, not skinny ones
 - Using the Voronoi diagram, we can generate a high-quality triangulation!
Delaunay triangulation

- Connect two input points if they share an edge in the Voronoi diagram

- This maximizes the smallest angle

- The circumcircle of a triangle passes through all 3 of its vertices

 - Not the same as the bounding circle

 - In the Delaunay triangulation, the circumcircles contain no other points
Applications of triangulation