
CS100M Spring 2008 Project 5 due Thursday 4/10 at 6pm

You must work either on your own or with one partner. You may discuss background issues and general solution

strategies with others, but the project you submit must be the work of just you (and your partner). If you work with

a partner, you and your partner must first register as a group in CMS and then submit your work as a group.

Objectives

There are two questions in this project. Question 1 is given below, and Question 2 will appear in a separate
document. You will learn more about graphics, matrices, cell arrays, structure arrays, and reading data files.
You will do more design this time than in previous projects. Specifically, in Question 1, we specify the tasks
that your program must accomplish, but it is up to you how to structure the program—encapsulate specific,
detailed tasks as subfunctions so that the structure of your program (main function) is clear. Remember to
write clear and concise comments!

1 Protein Folding

Protein folding is one of many difficult problems from the field of Computational Biology. A protein is
basically a string where each character represents one of the 20 amino acids. The goal of the protein-folding
problem is to predict the protein’s 3-dimensional structure given the sequence of amino acids. This is a
difficult problem, and currently, the most successful techniques don’t predict structure based simply on the
rules of chemistry and physics. Instead, structure is predicted by “folding” the query protein into carefully
chosen known-structures (i.e., those with some sequence-similarity to the query protein) and then checking
to see which has the lowest energy.

Because the prediction of protein structure is so difficult, researchers have been interested in simplified models
of proteins. We’ll use a version of one such simplified model, called the HP Model. In the HP Model, the
20 amino acids are reduced to just two: H (hydrophobic) and P (polar or hydrophilic). As indicated by the
name, hydrophobic amino acids hate water. The preferred position for an H is in the interior of the protein,
away from any surrounding water. P amino acids are happy to be anywhere; they don’t care about the
surrounding water. We simplify the folding so that each amino acid lies on a lattice point of the Cartesian
grid. Amino acids that are adjacent along the protein string are adjacent in the grid. The folding goal
becomes: Find the lattice-respecting fold that maximizes the number of adjacent H-H pairs; this is simple to
count and maximizing the number of H-H contacts has the effect of “hiding” the hydrophobic amino acids.
It has been shown [Berger & Leighton, RECOMB 1998] that even this simplified version of protein folding
is NP-complete on the 3D Cartesian lattice, i.e., there is no algorithm known that can efficiently solve this
problem.

For this assignment, we simplify the problem further by restricting ourselves to the 2D Cartesian grid. (The
2D version of the HP folding problem has a reasonably efficient algorithm, but this algorithm is beyond the
scope of this course.) You are to write a program that uses mouse-clicks to layout an HP string on the
2D grid and then reports the number of H-H contacts. Your program does not try to find the best layout;
instead, your program simply evaluates a 2D layout as clicked in by a user. Below is the figure window
showing the layout clicked in by a user for a given string. The string is shown at the bottom of the figure
and the top of the figure shows the number of H-H contacts.

There are 11 H−H contacts

HHHPPPHPHPHPHHHHPPPPPPPPHH

1



You will submit a function hpLayout that accepts a string argument consisting of the letters ‘H’ and ‘P’.
(The example diagram was based on the function call hpLayout(‘HHHPPPHPHPHPHHHHPPPPPPPPHH’)). Your
program is to accomplish the following tasks.

a. Display the grid. To see how to do this, take a look at the example random-walk programs (RandomWalk2D
and ShowRW) that was used in an earlier lecture. A 15-by-15 grid is big enough for any example that we’ll
be doing. ShowRW.m also demonstrates how to display larger disks using the plot property Markersize.
Another resource is Appendix A of the posted FVL text (check out the first three topics).

b. Place one amino acid (either an H or a P) on the grid for each legal mouse-click. Use the built-in
function ginput to get mouse clicks. Recall that [x,y]=ginput(1) will store in variables x and y the
Cartesian coordinates of one mouse click.

c. Indicate which amino acids are H and which are P in your picture. The example figure uses a blue ball
for each P (polar amino acid, loves water) and a red ball for each H (hydrophobic, hates water), but
you can use some other scheme if you prefer.

d. Indicate when a user has clicked illegally. Use the figure’s title for such messages (use built-in function
title). A click is illegal if it’s outside the set of valid grid points, if it’s not immediately adjacent to
the previously placed H or P, or if it’s attempting to use an already occupied grid point.

e. Indicate which amino acid is going to be placed on the grid for the next click. One way to do this is
to display just the part of the amino acid string (H’s and P’s) that remains to be placed. Our solution
shows the string at the bottom of the figure using the built-in function xlabel.

f. After the layout is done, display the original string of H’s and P’s that represent the protein. (Our
solution uses xlabel to show the string on the bottom of the figure.)

g. Calculate and display the number of H-H contacts on the figure (as the title). Two H’s are in contact
if they are adjacent on the grid. Note that certain contacts must occur because the H’s are adjacent
in the string. For example, the string ’HHHPPPHPHPHPHHHHPPPPPPPPHH’ must have at least
6 H-H contacts no matter how it’s laid out because there are 6 adjacent H-H pairs in the string.

Hint: Consider using one or more helper functions in your program design. For instance, it’s useful to have a
helper function that handles mouse-clicks. Such a function produces error messages until a legal mouse-click
occurs; then it returns the coordinates of the legal click. Note that error messages are supposed to appear
in the figure (we used the figures title to display error messages), not in the Command Window. Finally,
remember that design is a non-trivial process! Take some time to design your solution; this includes coming
up with an algorithm for the iterative drawing problem, specifying helper functions, and choosing helpful
data structures (e.g., matrix, vector).

Just for fun, see if you can find a layout for the example protein in the figure that has more than 11 H-H
contacts. One of our attempts produced 13 H-H contacts.

2


